Видео про космос 2 класс |
Английская грамматика | ||
<< Object-Oriented Software Engineering Practical Software Development using UML and Java | ТЕОРЕТИЧЕСКАЯ ГРАММАТИКА >> |
Автор: Bangpeng. Чтобы познакомиться с картинкой полного размера, нажмите на её эскиз. Чтобы можно было использовать все картинки для урока английского языка, скачайте бесплатно презентацию «Видео про космос 2 класс.ppt» со всеми картинками в zip-архиве размером 4547 КБ.
Сл | Текст | Сл | Текст |
1 | Grouplet: A Structured Image | 15 | 2-Grouplet). Gaussian distribution. Visual |
Representation for Recognizing Human and | codewords. Notations. I: Image. P: | ||
Object Interactions. Bangpeng Yao and Li | Reference point in the image. ?: Grouplet. | ||
Fei-Fei Computer Science Department, | ?i: Feature unit. ?(?,I): Matching score | ||
Stanford University. | of ? and I. ?(?i,I): Matching score of ?i | ||
{bangpeng,feifeili}@cs.stanford.edu. 1. | and I. For an image patch: ?(x): Image | ||
2 | Human-Object Interaction. Playing | neighborhood of x. ?: A small shift of the | |
saxophone. Human. Not playing saxophone. | location. Matching score between ? and I. | ||
Saxophone. 2. | Matching score between ?i and I. Codeword | ||
3 | Human-Object Interaction. Robots | assignment score. Gaussian density value. | |
interact with objects. Automatic sports | Codeword assignment score. Gaussian | ||
commentary. Medical care. “Kobe is dunking | density value. Ai: Visual codeword; xi: | ||
the ball.”. 3. | Image location; ?i: Variance of spatial | ||
4 | Background: Human-Object Interaction. | distribution. a?: Its visual appearance; | |
To be done. context. Schneiderman & | x?: Its image location. 15. | ||
Kanade, 2000 Viola & Jones, 2001 Huang | 16 | Grouplet representation. Playing | |
et al, 2007 Papageorgiou & Poggio, | saxophone. Other interactions. Part-based | ||
2000 Wu & Nevatia, 2005 Dalal & | configuration Co-occurrence | ||
Triggs, 2005 Mikolajczyk et al, 2005 Leibe | Discriminative. matching score: 0.6. | ||
et al, 2005 Bourdev & Malik, 2009 | matching score: 0.4. matching score: 0.0. | ||
Felzenszwalb & Huttenlocher, 2005 Ren | matching score: 0.1. 16. | ||
et al, 2005 Ramanan, 2006 Ferrari et al, | 17 | Grouplet representation. Part-based | |
2008 Yang & Mori, 2008 Andriluka et | configuration Co-occurrence Discriminative | ||
al, 2009 Eichner & Ferrari, 2009. | Dense. All possible combinations of | ||
Lowe, 1999 Belongie et al, 2002 Fergus et | feature units. Densely sample image | ||
al, 2003 Fei-Fei et al, 2004 Berg & | locations. Many possible spatial | ||
Malik, 2005 Felzenszwalb et al, 2005 | distributions. All possible Codewords. | ||
Grauman & Darrell, 2005 Sivic et al, | 1-grouplet. 2-grouplet. 3-grouplet. 17. | ||
2005 Lazebnik et al, 2006 Zhang et al, | 18 | Outline. Intuition of Grouplet | |
2006 Savarese et al, 2007 Lampert et al, | Representation Grouplet Feature | ||
2008 Desai et al, 2009 Gehler & | Representation Using Grouplet for | ||
Nowozin, 2009. Gupta et al, 2009. Yao | Recognition Dataset & Experiments | ||
& Fei-Fei, 2010a. Yao & Fei-Fei, | Conclusion. 18. | ||
2010b. Murphy et al, 2003 Hoiem et al, | 19 | A “Space” of Grouplets. 19. | |
2006 Shotton et al, 2006. Rabinovich et | 20 | A “Space” of Grouplets. 20. | |
al, 2007 Heitz & Koller, 2008 Divvala | 21 | A “Space” of Grouplets. 21. | |
et al, 2009. vs. 4. | 22 | A “Space” of Grouplets. On background. | |
5 | Background: Human-Object Interaction. | Shared by different interactions. 22. | |
To be done. context. Schneiderman & | 23 | We only need discriminative Grouplets. | |
Kanade, 2000 Viola & Jones, 2001 Huang | Number of feature units: N. N is large | ||
et al, 2007 Papageorgiou & Poggio, | (192200). Number of Grouplets: 2N very | ||
2000 Wu & Nevatia, 2005 Dalal & | large space. On background. Shared by | ||
Triggs, 2005 Mikolajczyk et al, 2005 Leibe | different interactions. Large ?(?,I). | ||
et al, 2005 Bourdev & Malik, 2009 | Small ?(?,I). Large ?(?,I). Small ?(?,I). | ||
Felzenszwalb & Huttenlocher, 2005 Ren | 23. 23. | ||
et al, 2005 Ramanan, 2006 Ferrari et al, | 24 | Obtaining discriminative grouplets for | |
2008 Yang & Mori, 2008 Andriluka et | a class. Apriori Mining. Mine 1000~2000 | ||
al, 2009 Eichner & Ferrari, 2009. | grouplets, only need to evaluate (2~100)?N | ||
Lowe, 1999 Belongie et al, 2002 Fergus et | grouplets. Obtain grouplets with large | ||
al, 2003 Fei-Fei et al, 2004 Berg & | ?(?,I) on the class. Remove grouplets with | ||
Malik, 2005 Felzenszwalb et al, 2005 | large ?(?,I) from other classes. Number of | ||
Grauman & Darrell, 2005 Sivic et al, | feature units: N. N is large (192200). | ||
2005 Lazebnik et al, 2006 Zhang et al, | Number of Grouplets: 2N very large space. | ||
2006 Savarese et al, 2007 Lampert et al, | Selected 1-grouplets. Candidate | ||
2008 Desai et al, 2009 Gehler & | 2-grouplets. [Agrawal & Srikant, | ||
Nowozin, 2009. Gupta et al, 2009. Yao | 1994]. 24. | ||
& Fei-Fei, 2010a. Yao & Fei-Fei, | 25 | Using Grouplets for Classification. | |
2010b. Murphy et al, 2003 Hoiem et al, | SVM. Discriminative grouplets. 25. | ||
2006 Shotton et al, 2006. Rabinovich et | 26 | Outline. Intuition of Grouplet | |
al, 2007 Heitz & Koller, 2008 Divvala | Representation Grouplet Feature | ||
et al, 2009. vs. 5. | Representation Using Grouplet for | ||
6 | Outline. Intuition of Grouplet | Recognition Dataset & Experiments | |
Representation Grouplet Feature | Conclusion. 26. | ||
Representation Using Grouplet for | 27 | People-Playing-Musical-Instruments | |
Recognition Dataset & Experiments | (PPMI) Dataset. | ||
Conclusion. 6. | http://vision.stanford.edu/resources_links | ||
7 | Outline. Intuition of Grouplet | html. PPMI+. PPMI-. Normalized image (200 | |
Representation Grouplet Feature | images each interaction). Original image. | ||
Representation Using Grouplet for | # Image: # Image: (172). (191). (177). | ||
Recognition Dataset & Experiments | (179). (200). (198). (185). (133). (149). | ||
Conclusion. 7. | (188). (167). (148). (169). (164). 27. | ||
8 | Recognizing Human-Object Interaction | 28 | Recognition Tasks on |
is Challenging. Reference image: playing | People-Playing-Musical-Instruments (PPMI) | ||
saxophone. Different pose (or viewpoint). | Dataset. Classification. Detection. | ||
Different lighting. Different background. | Playing different instruments. Playing vs. | ||
Different instrument, similar pose. Same | Not playing. For each interaction, 100 | ||
object (saxophone), different | training and 100 testing images. vs. vs. | ||
interactions. 8. | 28. | ||
9 | Grouplet: our intuition. Bag-of-words. | 29 | Classification: Playing Different |
Spatial pyramid. Part-based. Grouplet | Instruments. 7-class classification on | ||
Representation: Thomas & Malik, 2001 | PPMI+ images. SPM: [Lazebnik et al, 2006] | ||
Csurka et al, 2004 Fei-Fei & Perona, | DPM: [Felzenszwalb et al, 2008] | ||
2005 Sivic et al, 2005. Grauman & | Constellation: [Fergus et al, 2003] | ||
Darrell, 2005 Lazebnik et al, 2006. Weber | [Niebles & Fei-Fei, 2007]. 29. | ||
et al, 2000 Fergus et al, 2003 Leibe et | 30 | Classifying Playing vs. Not playing. | |
al, 2004 Felzenszwalb et al, 2005 Bourdev | Seven 2-class classification problem; | ||
& Malik, 2009. 9. | PPMI+ vs. PPMI- for each instrument. | ||
10 | Grouplet: our intuition. Capture the | Bassoon. Erhu. Flute. French horn. | |
subtle difference in human-object | Saxophone. Violin. Average PPMI+ images. | ||
interactions. Part-based configuration | Average PPMI- images. 30. | ||
Co-occurrence Discriminative Dense. | 31 | Classifying Playing vs. Not playing. | |
Grouplet Representation: 10. | Seven 2-class classification problem; | ||
11 | Outline. Intuition of Grouplet | PPMI+ vs. PPMI- for each instrument. | |
Representation Grouplet Feature | Guitar. Average PPMI+ images. Average | ||
Representation Using Grouplet for | PPMI- images. 31. | ||
Recognition Dataset & Experiments | 32 | Detecting people playing musical | |
Conclusion. 11. | instruments. Procedure: Face detection | ||
12 | Grouplet representation (e.g. | with a low threshold; Crop and normalize | |
2-Grouplet). Gaussian distribution. Visual | image regions; 8-class classification. 7 | ||
codewords. Notations. I: Image. P: | classes of playing instruments; Another | ||
Reference point in the image. ?: Grouplet. | class of not playing any instrument. | ||
?i: Feature unit. Ai: Visual codeword; xi: | Playing saxophone. No playing. No playing. | ||
Image location; ?i: Variance of spatial | 32. | ||
distribution. 12. | 33 | Detecting people playing musical | |
13 | Grouplet representation (e.g. | instruments. Area under the | |
2-Grouplet). Gaussian distribution. Visual | precision-recall curve: Out method: 45.7%; | ||
codewords. Notations. I: Image. P: | Spatial pyramid: 37.3%. 33. | ||
Reference point in the image. ?: Grouplet. | 34 | Detecting people playing musical | |
?i: Feature unit. ?(?,I): Matching score | instruments. Area under the | ||
of ? and I. ?(?i,I): Matching score of ?i | precision-recall curve: Out method: 45.7%; | ||
and I. Matching score between ? and I. | Spatial pyramid: 37.3%. False detection. | ||
Matching score between ?i and I. Ai: | Missed detection. 34. Playing French horn. | ||
Visual codeword; xi: Image location; ?i: | 35 | Examples of Mined Grouplets. Playing | |
Variance of spatial distribution. 13. | bassoon: Playing saxophone: Playing | ||
14 | Grouplet representation (e.g. | violin: Playing guitar: 35. | |
2-Grouplet). Gaussian distribution. Visual | 36 | Conclusion. The Next Talk. Holistic | |
codewords. Notations. I: Image. P: | image-based classification. Detailed | ||
Reference point in the image. ?: Grouplet. | understanding and reasoning. Vs. Pose | ||
?i: Feature unit. ?(?,I): Matching score | estimation & object detection. [B. Yao | ||
of ? and I. ?(?i,I): Matching score of ?i | and L. Fei-Fei. “Grouplet: A structured | ||
and I. For an image patch: ?(x): Image | image representation for recognizing human | ||
neighborhood of x. Matching score between | and object interactions.” CVPR 2010.]. [B. | ||
? and I. Matching score between ?i and I. | Yao and L. Fei-Fei. “Modeling mutual | ||
Codeword assignment score. Gaussian | context of object and human pose in | ||
density value. Ai: Visual codeword; xi: | human-object interaction activities.” CVPR | ||
Image location; ?i: Variance of spatial | 2010.]. 36. | ||
distribution. a?: Its visual appearance; | 37 | Thanks to. Juan Carlos Niebles, Jia | |
x?: Its image location. 14. | Deng, Jia Li, Hao Su, Silvio Savarese, and | ||
15 | Grouplet representation (e.g. | anonymous reviewers. And You. 37. | |
Видео про космос 2 класс.ppt |
«Перевод Complex Object» - The circle of eager eyes saw the doctor kneeling (Wells) - Теснившиеся кругом любопытные увидели доктора. I saw Red Chief sitting on Bill’s chest, with one hand twined in Bill’s hair (O. Увидев идущего мне навстречу слепого, я… С помощью как-придаточного. Основные различия семантики инфинитива и ing-формы в Complex Object.
«Complex object в английском языке» - Напомним, как выглядят местоимения в объектном падеже: I – me you – you he – him she – her it – it we – us they – them. Как было видно из последних четырех пунктов, во всех случаях инфинитив употребляется с частицей to. Complex object в английском языке. С глаголами восприятия помимо инфинитива может употребляться и причастие настоящего времени (Participle I).
«English for you» - При выполнении заданий программа оценивает твой результат и предоставляет отчёт. Узнать насколько хорошо ты усвоил материал тебе помогут: Все слова и выражения озвучены носителями языка. Ты сможешь совершенствовать своё произношение. «Английский для тебя» (курс английского языка с применением ИКТ). You are welcome!
«Английское словообразование» - Мода на английский язык в молодежной среде. Пополняется жаргонная лексика, в основном, за счет заимствований из английского языка. Префиксация. 6) Усечение. Основные способы словообразования: Суффиксация. 5) Сложение с сокращением. Сложение основ. Аббревиация. 8) Метафорический и функциональный перенос.
«Артикли в английском языке» - The Black Sea. Неопределенный артикль означает: «какой – то, любой, впервые упомянутый». Артикль не употребляется перед именами и фамилиями. A fish. Артикли в английском языке. I can see a bear. I can see an Easter Bunny. The flower is yellow. fish. Ivan Vladimirovich. English humor. An egg. Например: I’ ve got a flower.
«Программа по английской грамматике» - Появляется возможность самоконтроля своей деятельности. Подбор правил по грамматике в соответствии с тестовым материалом Набор грамматического материала. Литература. Получение объективной оценки изученного материала. Актуальность темы. Цель и задачи. Контрольный режим. Облегчается работа учителя. Повышается результативность изучения иностранного языка.