Презентации PowerPoint
<<  Amadeus E-Power Шаблоны чернобыль  >>
DCS1800/PCS1900: Pout
DCS1800/PCS1900: Pout
Картинки из презентации «Дизайн 4 класс» к уроку информатики на тему «Презентации PowerPoint»

Автор: Andrei Grebennikov. Чтобы познакомиться с картинкой полного размера, нажмите на её эскиз. Чтобы можно было использовать все картинки для урока информатики, скачайте бесплатно презентацию «Дизайн 4 класс.ppt» со всеми картинками в zip-архиве размером 1453 КБ.

Дизайн 4 класс

содержание презентации «Дизайн 4 класс.ppt»
Сл Текст Сл Текст
1LECTURE 4. HIGH-EFFICIENCY POWER 22series fundamentally tuned L0C0 resonant
AMPLIFIER DESIGN. 4.1. Overdriven Class B. circuit and load R. shunt capacitor C can
4.2. Class F circuit design. 4.3. Inverse represent intrinsic device output
Class F. 4.4. Class E with shunt capacitance and external circuit
capacitance. 4.5. Class E with parallel capacitance. active device is considered
circuit. 4.6. Class E with transmission as ideal switch to provide instantaneous
lines. 4.7. Broadband Class E circuit device switching between its on-state and
design. 4.8. Practical high efficiency RF off-state operation conditions. -
and microwave power amplifiers. 1. sinusoidal current in load. 22.
24.1. Overdriven Class B. In overdriven 234.5. Class E with parallel circuit.
Class B, voltage and current waveforms Optimum voltage conditions across switch:
have increased amplitudes with the same - switch is on ? and. - switch is off ? ?
peak values as in conventional Class B. under initial conditions. and. 23.
for DC voltage: for fundamental voltage : 244.5. Class E with parallel circuit. To
for odd voltage components, n = 3, 5, … : define three unknown parameters q, ? and
for even voltage components, n = 2, 4, … : p, two optimum conditions and third
for DC current: for fundamental current: equation for DC Fourier component are
for odd current components, n = 3, 5, … : applied resulting to system of three
2. algebraic equations: - second-order
34.1. Overdriven Class B. where RL is differential equation. where. and
load resistance. - fundamental output coefficients C1 and C2 are defined from
power. - DC output power. Collector initial conditions. 24.
efficiency : Out-of-band impedances : For. 254.5. Class E with parallel circuit.
- maximum collector efficiency for square Optimum circuit parameters : Load current.
voltage and current waveforms. Analyzing ? - parallel inductance. - parallel
on extremum gives ? = 88.6% for optimum capacitance. Current through capacitance.
angle ? 1= 32.4? 3. - load resistance. Collector voltage.
44.2. Class F circuit design. - Optimum phase angle at fundamental seen by
fundamental current component. - switch : Current through inductance.
fundamental voltage component when ?1? 0. Collector current. 25.
- fundamental output power. - DC output 264.6. Class E with transmission lines:
power. - collector efficiency. Harmonic approximation. Two-harmonic collector
impedance conditions: Ideal voltage and voltage approximation. Optimum impedance
current waveforms: 4. at fundamental seen by device : electrical
54.2. Class F circuit design: lengths of transmission lines l1 and l2
quarterwave transmisssion line. should be of 45° to provide open circuit
Assumptions for transistor: Assumptions seen by device at second harmonic. their
for load: i(?t) = IR sin?t. v(?t) = 2Vcc – characteristic impedances are chosen to
v(?t + ?). iT(?t) = iT(?t + ?) = IR?sin?t? provide optimum inductive impedance seen
i(?t) = IR(sin?t + ?sin?t?). ideal switch: by device at fundamental. for three
no parasitic elements. half period is on, harmonic approximation, additional open
half period is off: 50% duty cycle. purely circuit transmission line stub with
sinusoidal current: ideal L0C0-circuit 90-degree electrical length at third
tuned at fundamental. - load current. - harmonic is required ( 1.5 GHz, 1.5 W, 90%
collector voltage. - transmission-line ). 26.
current. - collector current. 5. 274.6. Class E with transmission lines:
64.2. Class F circuit design: approximation. Transmission-line Class E
quarterwave transmission line. collector power amplifier with parallel circuit.
current consisting of fundamental and even Optimum impedance at fundamental seen by
harmonics. sinusoidal load current. device : Parallel inductance is replaced
transmission-line current consisting of by transmission line providing optimum
even harmonics. rectangular collector inductive reactance at fundamental :
voltage. 6. Impedance seen by device at harmonics.
74.2. Class F circuit design. For Impedance seen by device at fundamental.
maximally flat waveforms: collector where. Relationship between optimum
current. collector voltage. optimum transmission line and load parameters :
values: optimum values: 7. 27.
84.2. Class F circuit design: second 284.6. Class E with transmission lines:
current and third voltage harmonic approximation. Transmission-line Class E
peaking. ImY2 = ? Output susceptance: Load power amplifier with parallel circuit :
network. Three harmonic impedance example of load network of DCS1800 handset
conditions: ImY1 = 0. ImY3 = 0. S21 HBT power amplifier. Collector voltage.
simulation (f0 = 500 MHz). Circuit Collector current. parameters of parallel
parameters. 8. transmission line is chosen to realize
94.2. Class F circuit design: even optimum inductive impedance at
current and third voltage harmonic fundamental. output matching circuit
peaking. Harmonic impedance conditions: consisting of series microstrip line with
Load network. ImY1 = 0. ImYeven = ? ImY3 = two parallel capacitances should provide
0. Circuit parameters: S21 simulation (f0 capacitive reactances at second and third
= 500 MHz). Requires additional impedance harmonics. Current flowing through
matching at fundamental. 9. collector capacitance. 28.
104.2. Class F circuit design. Class F 29DCS1800/PCS1900: Pout ? 30 dBm PAE ?
power amplifier with lumped elements. 51 %. 4.6. Class E with transmission
Drain voltage and current waveforms. f0 = lines: design example. 1.71-1.98 GHz
500 MHz. LDMOSFET: gate length 1.25 um handset InGaP/GaAs HBT power amplifier:
gate width 7x1.44 mm. 1 - inductance two-stage MMIC designed in 2001. Short
Q-factor = ? efficiency > 82%, linear mictostrip line: 15? Short mictostrip
power gain > 16 dB. 2 - inductance line: 15? WCDMA: Pout = 27 dBm ACPR = -37
Q-factor = 30 efficiency < 71%, linear dBc PAE = 38 %. Shunt inductance:
power gain > 14 dB. Output matching. bondwire. 3x3mm package. 29.
10. 304.6. Class E with transmission lines:
114.2. Class F circuit design. Class F design example. 28 V single-stage LDMOSFET
power amplifier with transmission lines. power amplifier module. Bandwidth: 480-520
Drain voltage and current waveforms. f0 = MHz. Output power: 20 W. Power gain: 15
500 MHz. LDMOSFET: gate length 1.25 um dB. PAE: 67%. 30.
gate width 7x1.44 mm. T-matching circuit 314.6. Class E with quarterwave
for output impedance transformation. transmission line. Optimum voltage
Output power - 39 dBm or 8 W. Collector conditions across switch: sinusoidal load
efficiency - 76%. Linear power gain > current. 50% duty cycle. - second-order
16 dB. Output matching. 11. differential equation. boundary
124.3. Inverse Class F. Concept of conditions: 31.
inverse Class F mode was introduced for 324.6. Class E with quarterwave
low voltage power amplifiers designed for transmission line. Optimum circuit
monolithic applications (less collector parameters : Load current. - series
current). Harmonic impedance conditions: inductance. - shunt capacitance. - load
Dual to conventional Class F with mutually resistance. Collector voltage. Current
interchanged current and voltage through capacitance. Current through
waveforms. - fundamental current. - transmission line. Collector current. 32.
fundamental voltage. - fundamental output 334.6. Class E with quarterwave
power. - DC output power. - ideal transmission line. Optimum impedances at
collector efficiency. 12. fundamental and harmonics for different
134.3. Inverse Class F. Optimum load Class E load networks. 33.
resistances for different classes. Load 344.7. Broadband Class E circuit design.
resistance in Class B : Load resistance in Reactance compensation load network.
Class F : Load resistance in inverse Class Reactance compensation principle. Input
F : Load resistance in inverse Class F is load network admittance. To maximize
the highest (1.6 times larger than in bandwidth: Optimum circuit parameters
Class B). Less impedance transformation using equations for inductance L and
ratio and easier matching procedure. 13. capacitance C in Class E mode. 1 -
144.3. Inverse Class F: second current impedance provided by series L0C0 resonant
and third voltage harmonic peaking. ImY3 = circuit. 2 - impedance provided by
? Harmonic impedance conditions: Load parallel LC resonant circuit. summation of
network. Circuit parameters: ImY1 = 0. reactances with opposite slopes results in
ImY2 = 0. S21 simulation (f0 = 500 MHz). constant load phase over broad frequency
Requires additional impedance matching at range. 34.
fundamental. 14. 354.7. Broadband Class E circuit design.
154.3. Inverse Class F. Inverse Class F Double reactance compensation load
power amplifier with transmission lines. network. Load network phase angle. To
Drain voltage and current waveforms. f0 = maximize bandwidth: Optimum circuit
500 MHz. LDMOSFET: gate length 1.25 um parameters using equations for inductance
gate width 7x1.44 mm. T-matching circuit L and capacitance C in Class E mode. 1 -
for output impedance transformation. single reactance compensation load
Output power - 39 dBm or 8 W. Collector network. 2 - double reactance compensation
efficiency - 71%. Linear power gain > load network. 35.
16 dB. Output matching. 15. 364.7. Broadband Class E circuit design.
164.3. Inverse Class F. Inverse Class F Broadband Class E power amplifier with
power amplifier with transmission lines. double reactance compensation. Drain
f0 = 500 MHz. Output matching. Load voltage and current waveforms. f0 =
network with output matching. 16. 120…180 MHz. Pin = 1 W. LDMOSFET: gate
174.4. Class E with shunt capacitance. length 1.25 um gate width 7x1.44 mm. 1 -
In Class E power amplifiers, transistor drain efficiency > 71%. 2 - power gain
operates as on-to-off switch and ideal > 9.5 dB. Input power - 1 W. Input VSWR
shapes of current and voltage waveforms do < 1.4. Gain flatness ? ? 0.3. 36.
not overlap simultaneously resulting in 374.8. Practical high efficiency RF and
100% efficiency. Unlike Class F power microwave power amplifiers. Typical
amplifiers analyzed in frequency domain as bipolar RF Class F power amplifier.
their voltage and current waveforms zero-volt Class C biasing using RF choke.
contain either in-phase or out-of-phase T-type input and output matching circuits
harmonics, Class E power amplifiers are with parallel capacitance. quarterwave
analyzed in time domain as their current transmission line in collector to suppress
and voltage waveforms contain harmonics even harmonics. high-Q series LC circuit
having specified different phase delays to provide high impedance conditions for
depending on load network configuration. harmonics. Up to 90% collector efficiency
Basic circuit of Class E power amplifier for 10 W at 250 MHz. 37.
with shunt capacitance consists of series 384.8. Practical high efficiency RF and
inductance L, capacitor C shunting microwave power amplifiers. Harmonic
transistor, series fundamentally tuned controlled MESFET microwave Class F power
L0C0 resonant circuit, RF choke to supply amplifier. Class AB biasing with small
DC current and load R. Shunt capacitor C quiescent current. T-type input and output
can represent intrinsic device output matching circuits with parallel
capacitance and external circuit capacitance. using second harmonic
capacitance. Active device is considered controlled circuits with series 50-ohm
as ideal switch to provide instantaneous microstrip line and capacitance each at
device switching between its on-state and device input and output. Input
off-state operation conditions. 17. second-harmonic termination circuit is
184.4. Class E with shunt capacitance. required to provide input quasi-square
Optimum voltage conditions across switch: voltage waveform minimizing device
Idealized assumptions for analysis: switching time. 74% power-added efficiency
transistor has zero saturation voltage, for 1.4 W at 930 MHz. 38.
zero on-resistance, infinite 394.8. Practical high efficiency RF and
off-resistance and its switching action is microwave power amplifiers. High power
instantaneous and lossless. total shunt LDMOSFET RF Class E power amplifier. 70%
capacitance is assumed to be linear. RF drain efficiency for 54 W at 144 MHz.
choke allows only DC current and has no Class B with zero quiescent current.
resistance. loaded quality factor QL of series inductance and ferrite 4:1
series fundamentally tuned resonant L0C0 transformer is required to match device
-circuit is infinite to provide pure input impedance. L-type output transformer
sinusoidal current flowing into load. to match optimum 1.5-ohm output impedance
reactive elements in load network are to 50-ohm load. quality factor of resonant
lossless. for optimum operation 50% duty circuit was chosen to be sufficiently low
cycle is used. - sinusoidal current (? 5 ) to provide some frequency bandwidth
flowing into load. 18. operation and to reduce sensitivity to
194.4. Class E with shunt capacitance. resonant circuit parameters. required
Optimum voltage conditions across switch: value of Class E shunt capacitance is
- switch is on ? or using initial provided by device intrinsic 38-pF
condition. ? when. - switch is off ? ? ? capacitance and external 55-pF
From first optimum condition: 19. capacitance. 39.
204.4. Class E with shunt capacitance. 404.8. Practical high efficiency RF and
Optimum circuit parameters : - series microwave power amplifiers. Low voltage
inductance. Load current. - shunt fully integrated MESFET Class E power
capacitance. - load resistance. Collector amplifier. 50% power-added efficiency for
voltage. Optimum phase angle at 24 dBm within 800-870 MHz. Class AB with
fundamental seen by switch : Collector small quiescent current. Class F
current. 20. interstage harmonic controlled circuit
214.4. Class E with shunt capacitance. using two LC resonant circuits tuned on
For nonlinear capacitances represented by fundamental and third harmonic to
abrupt junction collector capacitance with approximate square-wave driving signal.
? = 0.5, peak collector voltage increases Class E load network with optimum series
by 20%. Power loss due to non-zero inductance and shunt capacitance. T-type
saturation resistance. Power loss due to output matching circuit for impedance
finite switching time. Non-ideal switch. transformation to 50-ohm load. 40.
where. Only 1%. Nonlinear capacitance. 21. 414.8. Practical high efficiency RF and
224.5. Class E with parallel circuit. microwave power amplifiers. 225-400 MHz 28
Optimum voltage conditions across switch: V 20 W LDMOSFET Class AB power amplifier:
basic circuit of Class E power amplifier simulations. Stability. Power gain.
with parallel circuit consists of parallel Power-added efficiency. 41. 14 dB. 70%. 12
inductance L supplying also DC current, dB. 60%. 225 MHz. 225 MHz. 400 MHz. 400
parallel capacitor C shunting transistor, MHz.
Дизайн 4 класс.ppt
http://900igr.net/kartinka/informatika/dizajn-4-klass-113496.html
cсылка на страницу

Дизайн 4 класс

другие презентации на тему «Дизайн 4 класс»

«Программа создания презентаций Power point» - Компьютер пожужжит и пощелкает, а после чего оживит Power Pont. С помощью Power Point можно создать различные слайд – шоу. Power Point. Запуск Power Point. Сопротивление бесполезно. Выход из Power Point. Диапроектор. Web-страницы. Печатные страницы. Примите успокоительное. Домашние работы. Информационные станции.

«Создание презентаций в Power Point» - Создание презентации в Power Point. Презентацию можно использовать: для учащихся с 1 по 11 класс (на уроках). Место на уроке. Презентацию можно использовать: в преподавании любого предмета. Использование презентации: позволит изложить тему строго по плану. Двойной щелчок позволит вам выбрать нужную картинку.

«Power Point» - Призначення програми. Стислий виклад матеріалу, максимальна інформативність тексту. Вимоги до врахування фізіологічних особливостей сприйняття кольорів і форм. Головну ідею треба викласти в першому рядку абзацу. Рядок має містити 6—8 слів. Загальна кількість слів не повинна перевищувати 50. Усі слайди презентації мають бути витримані в одному стилі.

«Программа для создания презентаций» - Power Point. Существует множество версий оформления любой презентации, но в целом весь процесс может быть разбит на 2 составляющие: - Создание «тела» презентации - Создание эффектов. How ot use it. Powerpoint. Идея PowerPoint появилась у Боба Гаскинса (Bob Gaskins) Последняя версия приложения входит в комплект Microsoft Office 2007 и значительно отличается от всех предшествующих.

«Как сделать презентацию в PowerPoint» - Обучающая презентация по MS Power Point. Диалоговое окно, где необходимо указать слайд. Автофигуры. Копирование. Разметка слайда. Форматирование текста. Сохранение презентации. Озвучивание презентации. WordArt. Создать слайд. Фон. Выравнивание, распределение. Вставка слайдов из файла. Настройка анимации.

«Презентации PowerPoint» - Существует специальная компьютерная программа Microsoft PowerPoint для создания презентаций. Настройка анимации. Animal – живое, животное). Слова «АНИМАЦИЯ» обозначает «ОЖИВЛЕНИЕ» (англ. Для чего чаще всего используется презентация? Получение движущихся изображений на компьютере называется КОМПЬЮТЕРНОЙ АНИМАЦИЕЙ.

Презентации PowerPoint

15 презентаций о презентациях PowerPoint
Урок

Информатика

130 тем
Картинки