№ | Слайд | Текст |
1 |
 |
KONTROLL VENTILERJAN O HJETLAND |
2 |
 |
Fag disiplinerProsess Material Instrument ”Piping” Maling Innkj?p Produksjons oppf?lging |
3 |
 |
Hvilken type kontroll ventiler har viSete ventil (Globe) Kule ventil (Bal) Sving ventil (Butterfly) |
4 |
 |
Hva er en kontroll ventilEn kontroll ventil er arbeideren i en prosess lup |
5 |
 |
|
6 |
 |
BUTTERFLY |
7 |
 |
Ball |
8 |
 |
Globe |
9 |
 |
CAGE |
10 |
 |
Separator Level ControlGas Oil Oil Water Gas outlet Oil level Control valve Water level Control valve Crude Inlet from well head |
11 |
 |
Ventildimensjonering og valg - fremgangsmte Gjenta beregningene med relevante ventildata |
12 |
 |
KURVE |
13 |
 |
|
14 |
 |
Beregne ventilstrrelse - bakgrunn Har stort sett v?rt basert p? leverand?renes egne standarder / metoder Standardiseringsarbeide har p?g?tt siden tidlig 1960 ISA etablerte en komite i 1967 som skulle utvikle og distribuere standard ligningssett - ble til en “American National Standard” IEC benyttet ISAarbeidet som basis for ? formulere internasjonale standarder ISA og IEC standardene er harmonisert, med noen f? unntak (nomenklatur) ANSI / ISA Standard betegnes S75.01 IEC standard har betegnelsen 534-2-1 og 534-2-2 (inkompressible og kompressible medier) Disse standardene inneholder ogs? metodikk for st?yberegninger |
15 |
 |
St?y i reguleringsventilerSt?y i reguleringsventiler er en stor bidragsyter til anleggets totale bakgrunnsst?y Myndighets krav blir stadig strengere St?ykilder i et anlegg er vanskelige ? identifisere, p.g.a. mange forskjellige kilder, refleksjoner, forplantning av st?y etc. Brukere som ser bort fra st?ykravene er eksponert for un?dvendige belastninger Kontrakt?rer som garanterer ? m?te spesifikasjoner for st?y er eksponert for potensielle erstatningssaker / kostnader ved korreksjoner |
16 |
 |
Aerodynamiske stykilder |
17 |
 |
Linje-kildeTverrsnitt av r?r For hver dobling av avstand, tapes 3 dBa |
18 |
 |
Noise Trims - Whisper ISplits flow into small rectangular passages Increases Peak Frequency Complimentary body design Most effective dP/P1 <0.6 Up to 20 dB attenuation |
19 |
 |
Whisper IIIFlow passes through small holes Level 3 Uses 1.6 mm dia Level 1 Uses 3.2 mm dia 6 dBA difference Increases frequency Complimentary body design Jet independence Up to 30 dB attenuation |
20 |
 |
Whisper IIIC/d = 3.4 dP/P1< 0.99 C/d = 2.7 dP/P1 < 0.75 P2 P1 C/d = 2.0 dP/P1 < 0.6 Air Flow |
21 |
 |
WhisperFloStaged Reduction of Pressure Shift Frequency Spectrum Higher Unique Passage Shape Jet Independence Manages Velocity Using an Expanding Area Principle Complimentary Body Design Up to 40 dB attenuation |
22 |
 |
WhisperFlo Flow PassageOutlet Inlet |
23 |
 |
Lyddemper |
24 |
 |
Reduksjon av st |
25 |
 |
Begrense sty-generering Globe ventil med diffuser |
26 |
 |
VESKEFLASING CAVITATION |
27 |
 |
Liquid Flow through an OrificeVena Contracta Highest Velocity Lowest Pressure Pressure Velocity |
28 |
 |
CavitationVena Contracta Vapour Bubbles Collapse Vapour Bubbles Form Pressure Vapour Pressure |
29 |
 |
High Recovery Valves (Km= Fl2= 0.5) Line of sight valves; Butterfly,Ball Low Recovery Valves (Km = Fl2=0.8) Globe valves Pressure Pressure |
30 |
 |
Cavitation Damage |
31 |
 |
Cavitation - Path TreatmentCover exposed areas with resistant material 316 Sst < 18 HRC 416 Sst (Std trim material) 38 HRC min 440C 56 HRC Alloy 6 (Stellite) 36 to 44 HRC Ceramic Tungsten Carbide |
32 |
 |
Cavitation - Path TreatmentCover exposed areas with resistant material 316 Sst < 18 HRC 416 Sst (Std trim material) 38 HRC min 440C 56 HRC Alloy 6 (Stellite) 36 to 44 HRC Ceramic Tungsten Carbide |
33 |
 |
Cavitation - Path TreatmentSelect body style that directs the cavitation away from surfaces ( Isolates ) Angle body Flow down Liner (Hardened Material) Hardened trim Micro-Flat Trim for low Cv requirements Cavitation is confined to the centre of the outlet passage |
34 |
 |
Cavitation - Path TreatmentSelect body style that directs the cavitation away from surfaces Vee Ball Valve Reverse flow Stellited ball Forward Flow Reverse Flow |
35 |
 |
Cavitation - Path TreatmentAspiration Inject air into cavitating flow stream Air bubbles absorb energy released in bubble collapse |
36 |
 |
Cavitation - Path TreatmentCavitrol III 1 Stage Flow down Holes directly opposing Keeps any cavitation in centre of cage away from surfaces |
37 |
 |
Cavitation - Source TreatmentTreating the cause of cavitation Use valve trim that avoids cavitation Low recovery valve High FL2( KM) Change from rotary valve to globe P1 P2 PV Pressure Low Recovery Valve (Km)FL2 = 0.85 No Cavitation High Recovery Valve (Km) FL2 = 0.5 Cavitation |
38 |
 |
Hole shapeThe hole is designed to maximize flow without flow separation from the wall, and with enough recovery volume for the fluid from the previous orifice . Pilot hole and recovery volume Controlling orifice High Capacity Low Recovery flow |
39 |
 |
Hole Design - Control Flow SeparationThin Plate Low Capacity Low Recovery Thick Plate High Capacity High Recovery Cavitrol Hole High Capacity Low Recovery Any cavitation that does occur is outside cage wall |
40 |
 |
Staged Pressure Drop1st Stage 2nd Stage 3rd Stage Standard Trim Staged Cavitrol Trim Note the uneven pressure drops. The first stage takes the majority of the drop so the last stage takes very little and can control Pvc very close to Pv. P1 P2 PV |
41 |
 |
3 Stage Cavitrol III Trim |
42 |
 |
CAVITROL IVCAV4 with Cavitrol IV Trim Trim can take pressure drops up to 448 Bar Protected seating surface eliminates significant pressure drop across seating surfaces Trim can be used in other globe or angle valves Staged clearance flows |
43 |
 |
CAV4MINI CAV4 TRIM AVAILABLE IN 2” CLASS 1500 AND 2” CLASS 2500 DESIGN EHS VALVES 1” DIAMETER PORT, 3/4” TVL Cv RANGE - .1 TO 2.9 SAME LIMITS AND FEATURES AS STANDARD CAV4 USED FOR METHANOL LETDOWN Special Products Group |
44 |
 |
ApplicationHole size Cav III 1-stage hole size = 0.0625” or 0.125” diameter Cav III 2 and 3 stage smallest hole size (in the first stage sleeve) = 0.049” diameter Larger holes for can be used for less plugging, but will reduce cavitation protection. If larger holes are used more stages are required. |
45 |
 |
Velocity - CavitrolSecond stage velocity lower than First stage Outlet Stage: Average velocity = 45 ft/sec Peak velocity - 57 ft/sec |
46 |
 |
Separator Level ControlGas Oil Oil Water Gas outlet Oil level Control valve Water level Control valve Crude Inlet from well head |
47 |
 |
Produced Water/Water Injection Valves |
48 |
 |
Challenges of these applicationsCavitation High pressure drops Erosion High pressure drops Sand and other particles Corrosion Sour conditions Chloride stress cracking |
49 |
 |
Produced Water/Water Injection Valve IssuesHigh pressure drop Can lead to damaging cavitation and erosion Solid particulate can lead to plugging of conventional severe service trim Tight shutoff required Protects the valve from low flow damage when in the closed position Possible corrosion issues Issues with stress corrosion cracking need to be addressed Depends upon H2S and chloride concentration Typical stacked disc trim |
50 |
 |
ErosionHard surfaces decreases the amount or speed of damage Alloy 6 440C Tungsten Carbide Ceramics Increasing erosion resistance |
51 |
 |
Better Solution - Fisher NotchFlo DSTPressure staging reduces vibration Available in 4 stages and capable of up to 180 Bar of pressure drop Ability to pass particles up to 12 mm diameter Protected seat maintains shutoff integrity Hardened materials resist erosion damage Can be used for globe or angle valve configurations |
52 |
 |
Trash Tolerance - Notchflo vsDST |
53 |
 |
DST “Dirty Service Trim”W6787-1 |
54 |
 |
DST Flow DownW678-1 |
55 |
 |
Rotary Actuator |
56 |
 |
|
57 |
 |
|
58 |
 |
HOOK UP |
59 |
 |
DVC6000 |
60 |
 |
E.SEAL |
«KONTROLL VENTILER» |