Генетика
<<  Хромосомная теория наследственности 9 класс Проблема гмо в современном мире  >>
Реализация генотипа в фенотип
Реализация генотипа в фенотип
Некоторые общие положения
Некоторые общие положения
Внутриаллельные взаимодействия генов
Внутриаллельные взаимодействия генов
Внутриаллельные взаимодействия генов
Внутриаллельные взаимодействия генов
Внутриаллельные взаимодействия генов
Внутриаллельные взаимодействия генов
Множественный аллелизм
Множественный аллелизм
Множественный аллелизм
Множественный аллелизм
Комплементарными (дополняющими) называют гены, обусловливающие при
Комплементарными (дополняющими) называют гены, обусловливающие при
Межаллельные взаимодействия генов (Комплементарность)
Межаллельные взаимодействия генов (Комплементарность)
Два разных гена могут находиться в разных локусах и влиять на один и
Два разных гена могут находиться в разных локусах и влиять на один и
Комплементарное действие генов наиболее четко проявляется, когда
Комплементарное действие генов наиболее четко проявляется, когда
При скрещивании черной и белой мышей в F1 все потомство будет иметь
При скрещивании черной и белой мышей в F1 все потомство будет иметь
Межаллельные взаимодействия генов (Комплементарность)
Межаллельные взаимодействия генов (Комплементарность)
Эпистаз (от греч
Эпистаз (от греч
Эпистаз
Эпистаз
Эпистаз (подавление)
Эпистаз (подавление)
Криптомерия (взаимодействие по типу проявления)
Криптомерия (взаимодействие по типу проявления)
Полимерное взаимодействие
Полимерное взаимодействие
Полимерия (некумулятивная)
Полимерия (некумулятивная)
Полимерия (некумулятивная)
Полимерия (некумулятивная)
Полимерия (кумулятивная)
Полимерия (кумулятивная)
Модификационное взаимодействие
Модификационное взаимодействие
Плейотропия
Плейотропия
Пенетрантность генов
Пенетрантность генов
Экспрессивность генов (выраженность проявления генетически
Экспрессивность генов (выраженность проявления генетически
Влияние факторов среды
Влияние факторов среды
Норма реакции признака
Норма реакции признака
Подытожим:
Подытожим:
Реализация генотипа в фенотип
Реализация генотипа в фенотип

Презентация: «Реализация генотипа в фенотип». Автор: . Файл: «Реализация генотипа в фенотип.ppt». Размер zip-архива: 272 КБ.

Реализация генотипа в фенотип

содержание презентации «Реализация генотипа в фенотип.ppt»
СлайдТекст
1 Реализация генотипа в фенотип

Реализация генотипа в фенотип

Взаимодействие генов и влияние факторов среды

2 Некоторые общие положения

Некоторые общие положения

Фенотип осознается нами в виде признаков. Существуют элементарные и сложные признаки, хотя границу между ними провести сложно. Каждый ген кодирует элементарный признак согласно принципа: 1 ген – 1 полипептид. Как следствие, большинство сложных признаков детерминируются не одним, а многими генами (принцип полигенности). В ходе онтогенеза формирование этих признаков происходит не только в результате действия отдельных генов, но и их взаимодействия (взаимовлияния). Взаимодействуют естественно не сами гены, а их продукты – фены (полипептиды). На реализацию генотипа в фенотип также оказывают влияние факторы окружающей среды.

3 Внутриаллельные взаимодействия генов

Внутриаллельные взаимодействия генов

Полное доминирование - вид взаимодействия, при котором в фенотипе гетерозигот присутствует продукт только одного (доминантного) гена и фенотип гетерозигот имеет такое же значение, как фенотип гомозигот по доминантному признаку. (Окраска семядолей у гороха – желтая и зеленая)

4 Внутриаллельные взаимодействия генов

Внутриаллельные взаимодействия генов

Неполное доминирование - вид взаимодействия, при котором фенотип гетерозигот отличается от фенотипов гомозигот по доминантному и рецессивному признакам и имеет промежуточное значение между ними.

5 Внутриаллельные взаимодействия генов

Внутриаллельные взаимодействия генов

iOiO

IAIA или iai0

IВIВ или IВi0

Iаiв

Кодоминирование - вид взаимодействия, при котором в фенотипе гетерозигот присутствуют продукты обоих генов. Например, кодоминирование проявляется у людей с 4 группой крови. Первая группа крови у людей с аллелями iOiO, вторая - с аллелями IAIA или IAi0; третья - IВIВ или IВi0; четвертая группа имеет аллели IАIВ.

Группа крови

Антигены эритроцитов

Антитела Сыворотки

Генотип

0 (I)

0

анти-А анти-B

А(ii)

A

Анти-b

В(iii)

B

Анти-a

Ав(iv)

Ав

---

6 Множественный аллелизм

Множественный аллелизм

Многие гены у разных организмов существуют более чем в двух аллельных формах, хотя один диплоидный организм не может быть носителем более двух аллелей. Впервые множественные аллели были открыты в локусе white, определяющем окраску глаз у дрозофилы, Морганом и его сотрудниками.

7 Множественный аллелизм

Множественный аллелизм

У кроликов существует серия множественных аллелей по окраске шерсти: сплошная (шиншилла), гималайская (горностаевая), а также альбинизм. Гималайские кролики на фоне общей белой окраски шерсти имеют черные кончики ушей, лап, хвоста и морды. Альбиносы полностью лишены пигмента

8 Комплементарными (дополняющими) называют гены, обусловливающие при

Комплементарными (дополняющими) называют гены, обусловливающие при

совместном сочетании в генотипе в гомозиготном или гетерозиготном состоянии новое фенотипическое проявление признака.

Межаллельные взаимодействия генов (Комплементарность)

9 Межаллельные взаимодействия генов (Комплементарность)

Межаллельные взаимодействия генов (Комплементарность)

Классическим примером комплементарного взаимодействия генов является наследование формы гребня у кур (В.Бэтсон, 1902). При скрещивании кур, имеющих розовидный и гороховидный гребень, все первое поколение имеет ореховидный гребень. При скрещивании гибридов первого поколения у потомков наблюдается расщепление по форме гребня: 9/16 ореховидных: 3/16 розовидных: 3/16 гороховидных: 1/16 листовидный. Генетический анализ показал, что куры с розовидным гребнем имеют генотип А_bb, с гороховидным - ааВ_, с ореховидным - А_В_ и с листовидным - ааbb, то есть развитие розовидного гребня происходит в том случае, если в генотипе имеется только один доминантный ген - А, гороховидного - наличие только гена В, сочетание генов А В обусловливает появление ореховидного гребня, а сочетание рецессивных аллелей этих генов - листовидного.

10 Два разных гена могут находиться в разных локусах и влиять на один и

Два разных гена могут находиться в разных локусах и влиять на один и

тот же признак. (Наследование окраски глаз у дрозофилы при комплементарном взаимодействии неаллельных генов)

Межаллельные взаимодействия генов (Комплементарность)

11 Комплементарное действие генов наиболее четко проявляется, когда

Комплементарное действие генов наиболее четко проявляется, когда

скрещиваются две белые формы некоторых животных (кур) или растений (душистого горошка, белого клевера, кукурузы), а в потомстве появляются окрашенные формы. При скрещивании двух рас душистого горошка с белыми цветками (Lathyrus odoratus) в FI формируются растения с пурпурной окраской. При самоопылении этих растений в F2 наблюдается отклонение от менделевского расщепления: 9/16 растений имеют цветки с пурпурной окраской, тогда как 7/16 - с белой.

Межаллельные взаимодействия генов (Комплементарность)

Р ААвв х ааВВ белая белая F1 АаВв пурпурная F2 А- В- - 9; А- вв – + аа В- + аавв – -7 пурпурные белые

А – белые цветки а – нет эффекта В – белые цветки в – нет эффекта гены А и В действуют комплементарно – пурпурная окраска цветка

12 При скрещивании черной и белой мышей в F1 все потомство будет иметь

При скрещивании черной и белой мышей в F1 все потомство будет иметь

серую окраску шерсти (агути). Во втором поколении будет наблюдаться расщепление: 9 – агути; 3 – черных; 4 – белых.

Межаллельные взаимодействия генов (Комплементарность)

Р ААвв х ааВВ черная белая F1 АаВв агути F2 А- В- - 9; А- вв – 3; аа В- + аавв – 4 агути черные белые

А – пигмент а – нет эффекта В – ген распределитель пигмента в – нет эффекта гены А и В действуют комплементарно

13 Межаллельные взаимодействия генов (Комплементарность)

Межаллельные взаимодействия генов (Комплементарность)

При скрещивании двух растений фигурной тыквы, имеющих плоды округлой формы в F1 все потомство будет иметь плоды дисковидной формы. Во втором поколении будет наблюдаться расщепление: 9 – дисковидная; 6 – округлая; 1 – фигурная.

Р ААвв х ааВВ округлые округлые F1 АаВв дисковидные F2 А- В- - 9; А- вв + аа В- - 6 аавв – 1 дисковидные округлые фигурные

А – округлая а – фигурная В – округлая в – нет эффекта гены А и В действуют комплементарно – дисковидная форма плода

14 Эпистаз (от греч

Эпистаз (от греч

epistasis – препятствие, подавление)

Взаимодействие между доминантными генами из разных пар аллелей, при котором один ген, называемый ингибитор или супрессор, подавляет проявление другого.

15 Эпистаз

Эпистаз

А – нет окраски а – нет окраски В – дает пигмент в – нет окраски аллель А > В -, т.е. является ингибитором или супрессором Расщепление в F2: 13:3

16 Эпистаз (подавление)

Эпистаз (подавление)

Пример: доманантный ген (А) серой окраски лошади подавляет проявление другой пары генов, определяющих масть (вороную - В, рыжую – в) При скрещивании жеребца серой масти с рыжей кобылой все потомство в первом поколении будет иметь серую масть. При дальнейшем скрещивании гибридов F1 в F2 будет наблюдаться расщепление 12:3:1 12 А-В-, А-вв - серые 3 ааВ- - вороные 1 аавв - рыжие

17 Криптомерия (взаимодействие по типу проявления)

Криптомерия (взаимодействие по типу проявления)

Некоторые гены не проявляют своего действия фенотипически до тех пор, пока не происходит их взаимодействия с другими (неаллельными) генами. Ген, присутствие которого необходимо в генотипе, чтобы признак проявился называется геном – проявителем. Пример – При скрещивании двух форм растения льна с розовыми и белыми цветками в F1 все потомство будет иметь голубые цветки. Во втором поколении будет наблюдаться расщепление: 9 – голубые; 3 – розовые; 4 – белые.

Р ААвв х ааВВ розовая белая F1 АаВв голубая F2 А- В- - 9; А- вв – 3; аа В- + аавв – 4 голубая розовая белая

А – ген проявитель а – нет эффекта В – голубая в – розовая Аллель В- проявляется только в сочетании с геном А

18 Полимерное взаимодействие

Полимерное взаимодействие

Полимерия. Скрещивая белую и пурпурную фасоли, Мендель столкнулся с явлением полимерии. Полимерией называют влияние двух, трех и более неаллельных генов на развитие одного и того же признака. Такие гены называют полимерными, или множественными, и обозначают одной буквой с соответствующим индексом, например А1, А2, а1, а2. Полимерные гены контролируют большинство количественных признаков организмов: высоту растения, массу семян, масличность семян, содержание сахара в корнеплодах сахарной свеклы, удойность коров, яйценоскость, вес тела и т.д. У человека по типу полимерии наследуется, например, окраска кожи.

19 Полимерия (некумулятивная)

Полимерия (некумулятивная)

При скрещивании двух гомозиготных форм пастушьей сумки с треугольными и округлыми семенами в F1 все потомство будет иметь треугольные семена. Во втором поколении будет наблюдаться расщепление: 15 с треугольными / 1 с округлыми

20 Полимерия (некумулятивная)

Полимерия (некумулятивная)

Р А1 А1 А2 А2 х а1 а1 а2 а2 треугольные округлые F1 А1а1А2а2 треугольные F2 А1-А2- + А1-а2а2 + а1а1А2- - 15; а1а1а2а2 – 1 треугольные округлые

А1 – треугольные семена А2 – треугольные семена а1 - округлые семена а2 – округлые семена А1 и А2 - полимерные гены

21 Полимерия (кумулятивная)

Полимерия (кумулятивная)

При скрещивании двух гомозиготных форм пшеницы с ярко красным эндоспермом и неокрашенным эндоспермом в F1 все потомство будет иметь семена с розовым эндоспермом. Во втором поколении будет наблюдаться расщепление: 1:4:6:4:1(по мере убывания интенсивности окраски зерновки

22 Модификационное взаимодействие

Модификационное взаимодействие

Для многих генов известна способность модифицировать эффекты действия других (неаллельных генов). Такие гены имеют название модификаторы. Гены -модификаторы могут иметь или не иметь собственное фенотипическое проявление.

23 Плейотропия

Плейотропия

Плейотропное (множественное) действие гена Один ген определяет развитие или влияет на проявление нескольких признаков. Пример: ген карликовости у мышей (рецессивная аллель) определяет ненормальное развитие гипофиза. Рецессивные гомозиготы прекращают расти на второй неделе жизни, неспособны к размножению, внутренние органы, особенно железы внутренней секреции, имеют измененную форму, менее подвижны и плохо переносят перепады температур. Пример: ген платиновой окраски шерсти у лисиц одновременно является летальным в гомозиготном состоянии

24 Пенетрантность генов

Пенетрантность генов

Важнейшей особенностью действия генов является их пенетрантность, впервые описанная Н. В. Тимофеевым-Ресовским. Под ней понимают частоту проявления того или иного гена, измеряемую частотой встречаемости признака в популяции, т. е. частотой встречаемости в популяции организмов, обладающих этим признаком. Пенетрантность является статистической концепцией регулярности, с которой выражается (экспрессируется) тот или иной ген в популяции. Если какой-либо ген в популяции фенотипически выражается у индивидуумов, количество которых составляет 75% обследованных, то считают, что его пенетрантность тоже составляет 75%. Например, доминантный ген, контролирующий изменение цвета склеры глаз человека встречается у 90% людей. Следовательно, пенетрантность этого гена составляет 90%.

25 Экспрессивность генов (выраженность проявления генетически

Экспрессивность генов (выраженность проявления генетически

детерминированного признака)

Экспрессия некоторых генотипов может зависеть от внешних условий. Ниже показаны два кролика, один из которых с темными пятнами. Аллель гималайской окраски у кролика температурочувствителен. При повышенной температуре белок не функционален и необходимый пигмент не образуется, а при нормальной температуре получается кролик, у которого некоторые участки шкуры окрашены.

26 Влияние факторов среды

Влияние факторов среды

Экспрессивность и пенетрантность подвержены колебаниям. Причины этих колебаний не совсем ясны. Обычно вариабельность в экспрессивности и пенетрантности генов объясняют либо модифицирующим влиянием других генов (генов-модификаторов), либо действием факторов среды либо совместным действием обоих этих факторов, а возможно и других факторов.

27 Норма реакции признака

Норма реакции признака

Диапазон проявлений генотипа в зависимости от условий окружающей среды называют наследственной нормой реакции.

28 Подытожим:

Подытожим:

Формирование любого генетически детерминированного признака (реализация генотипа в фенотип) – достаточно сложный процесс, на исход которого влияют многие факторы: полученный от родителей комплекс генов, взаимодействие этих генов, факторы окружающей среды

29 Реализация генотипа в фенотип
«Реализация генотипа в фенотип»
http://900igr.net/prezentacija/biologija/realizatsija-genotipa-v-fenotip-142434.html
cсылка на страницу

Генетика

16 презентаций о генетике
Урок

Биология

136 тем
Слайды
900igr.net > Презентации по биологии > Генетика > Реализация генотипа в фенотип