№ | Слайд | Текст |
1 |
 |
Особенности сертификационных испытаний гидроагрегатов ГЭСДокладчик: Светлорусов Павел Викторович 1 |
2 |
 |
Краткое содержаниеМаневренность ГЭС по сравнению с ТЭС и условия проведения испытаний (напор) Измерение скорости оборотов ГА Проверка нечувствительности первичных регуляторов Гидродинамические процессы при резком изменении нагрузки Проверка влияния ГРАМ на выдачу первичной мощности Особенности сертификации высоконапорных станций на примере Красноярской ГЭС Работа ГА в режиме НПРЧ во время сертификационных испытаний 2 |
3 |
 |
Маневренность ГЭС по сравнению с ТЭС и условия проведения испытаний(напор) Маневренность ГЭС Быстрое включение в работу из резерва - время пуска гидроагрегата, включая синхронизацию, составляет 30...50 сек. Быстрая маневренность ГА ГЭС – это высокие по сравнению с ТЭС скорости изменения нагрузки 3 |
4 |
 |
Для примера - Воткинская ГЭС изменение нагрузки на 22 МВт за 10 сек(132 % Рном в мин.) 4 |
5 |
 |
При проведении сертификационных испытаний напор будет отличатся отноминального. Это связано с годовыми и сезонными климатическими изменениями и с необходимостью регулирования речного стока. Регулирование речного стока необходимо для различных отраслей народного хозяйства, например, для поддержания судоходства на реке, поддержание уровня для водозабора городов и т.д. 5 |
6 |
 |
Измерение скорости оборотов ГАНа Воткинской ГЭС: Для измерения частоты используется тахогенератор и 3 цифровых датчика с зубчатым колесом. В качестве основного измерения используется сигнал частоты тахогенератора, при его неисправности – усреднённый сигнал с датчиков зубчатого колеса. На Красноярской ГЭС: Для пуска гидроагрегата на холостой ход используется тахогенератор, установленный на валу гидрогенератора. Для поддержания частоты после подачи возбуждения на гидрогенератор используется сигнал частоты с трансформатора напряжения (ТН) генератора. 6 |
7 |
 |
На ряде крупных ГЭС давно отказались от зубчатого колесаТочность измерения частоты с неё очень сильно зависит от длины ротора турбины. При его вращении появляются большие механические биения. Тахогенератор меряет не механические величины, а электрические. И преобразует их в импульсы для модулей. Самый точный - ТН генератора. Точность измерения частоты таким способом соответствует требованиям и документально подтверждена. В требованиях стандарта необходимо учитывать такие особенности измерения частоты на ГА. 7 |
8 |
 |
8Измерение тахогенератора Измерение ТН |
9 |
 |
Проверка нечувствительности первичных регуляторовВоткинская ГЭС: При имитации отклонений частоты сети на ?? = ±20 мГц фиксируются противоположные по знаку каждому изменению частоты изменения мощности гидроагрегата. Фактическое отклонение мощности составило 0,6 МВт, что составляет 0,6% от Рном и укладывается в требуемый диапазон 0,33?0,67% Рном. Нечувствительность первичных регуляторов не более ±10мГц. 9 |
10 |
 |
10 |
11 |
 |
Красноярская ГЭС: При имитации отклонений частоты сети на ? = ±20 мГц зафиксировать противоположные по знаку каждому изменению частоты изменения мощности гидроагрегата было затруднительно. Пришлось усреднить измерения активной мощности ГА на интервале 20 сек.. что бы оценить фактическое отклонение мощности ГА, которое составило 0,5 – 1 МВт и это меньше требований стандарта. Возможно, такое поведение вызвано гидродинамическими процессами на рабочем колесе гидротурбины. 11 |
12 |
 |
12 |
13 |
 |
При этом в соответствии с техдокументацией зона нечувствительности по частоте электрогидравлического регулятора составляет ±2мГц. Далее были проанализированы тренды реального участия ГА в НПРЧ при разных настройках «мертвой полосы» и статизма первичного регулирования. Сопоставив отклонения значения активной мощности и отклонения частоты сети был сделан вывод, что величина нечувствительности первичных регуляторов не превышает ±10 мГц. Вывод: Из выше сказанного можно сделать предварительное заключение, что для высоконапорных ГЭС и ГА большой мощности существующая методика проверки нечувствительности первичных регуляторов не совсем подходит. Возможно что методику необходимо доработать. 13 |
14 |
 |
Гидродинамические процессы при резком изменении нагрузки (скачокмощности в обратную сторону) При регулировании гидротурбин на их маневренные характеристики большое влияние оказывают такие явления как кавитация и гидроудар. Кавитация возникает из-за пульсации гидродинамического давления, которое приводит к образованию в воде микропузырьков, которые могут быть причиной разрушения металла, повышения вибрации и шума, а также снижения КПД. Гидроудар возникает при быстром изменении нагрузки в следствии изменения расхода воды через гидротурбину и, связано с изменением скорости потока воды в трубопроводах. При изменении скорости воды в трубопроводе возникают колебания давления противоположного знака, передающиеся стенкам трубопровода. 14 |
15 |
 |
Пример: ГА 100МВт Воткинская ГЭС - в верху диапазона нагрузки15 |
16 |
 |
Пример: ГА 500 МВт Красноярская ГЭС - в верху диапазона нагрузки16 |
17 |
 |
Пример: ГА 100 МВт Воткинская ГЭС - в низу диапазона нагрузкиВнизу диапазона нагрузки обратное отклонение мощности в следствии гидроудара значительно ниже 17 |
18 |
 |
Пример: ГА 500 МВт Красноярская ГЭС - в низу диапазона нагрузкиВнизу диапазона нагрузки обратное отклонение мощности в следствии гидроудара вообще не наблюдается 18 |
19 |
 |
По условиям гидроудара возможна скорость изменения нагрузкигидротурбин от 150 до 500 МВт/мин в зависимости от параметров ГЭС и гидротурбин. При проведении сертификационных испытаний выполняется опыт с наибольшим отклонением частоты в 210 мГц при этом изменение мощности происходит на 7% Рном. За первые 10 секунд изменение мощности должно составить 3,5% Рном, что соответствует скорости изменения мощности: 100/100*3,5= 3,5 МВт/10сек или 21 МВт/мин. – ГА 100 МВт, Воткинская ГЭС 500/100*3,5= 17,5 МВт/10сек или 105 МВт/мин. – ГА 500 МВт. Красноярская ГЭС 19 |
20 |
 |
Проверка влияния ГРАМ на выдачу первичной мощностиВ стандарте Обеспечение согласованной работы САРЧМ СТО 59012820.29.240.002-2010 слишком витиеватые формулировки по описанию учёта вырабатываемой первичной мощности в ГРАМ (п. 5.1.2, 5.1.3 ) . В стандарте НПРЧ для ГЭС более чёткие формулировки (п. 5.6). Желательно увязать между собой эти два стандарта общими формулировками в части требования к ГРАМ для участия в НПРЧ. Так как стандарт Согласованной работы САРЧМ был выпущен раньше, то в соответствии с ним реализовывался ГРАМ станции. На Красноярской ГЭС получилась ситуация, при которой ГА находясь в индивидуальной работе выдавал необходимую первичную мощность и отвечал требованиям стандарта НПРЧ, но при этом всю эту первичную мощность гасил ГРАМ станции т.к. не было обратной связи по первичной мощности между ГА в индивид. упр. и ГРАМ. На Воткинской ГЭС инженерное решение по реализации ГРАМ более гибкое и отвечает требованиям стандарта НПРЧ поэтому там таких проблем, которые выявились на Красноярской ГЭС не возникло. 20 |
21 |
 |
Особенности сертификации высоконапорных станций на примереКрасноярской ГЭС Для ГЭС характерно наличие нескольких зон работы. Это обусловлено конструктивными особенностями как ГА так и плотины ГЭС. Воткинская ГЭС номинальный напор 16,5 м – низконапорная станция Зоны работы: 0 – 35 МВт запрещённая зона работы; 35 – 100 МВт зона разрешённой работы Красноярская ГЭС номинальный напор 93 м – высоконапорная станция Высоконапорные станций имеют большее количество зон работы. В случае Красноярской ГЭС это четыре зоны работы. При этом зона нежелательной работы находится между зонами разрешённой работы и разделяет из на две, это I-зона и III, IV-зоны условно объединённые в одну. При наличии таких зон возникает необходимость проводить полный объём испытаний для каждой зоны отдельно. В стандарте надо описать методику проведения испытаний для таких типов гидроагрегатов. 21 |
22 |
 |
Условия работы ГА в разных зонах I-зона Турбина работает относительноспокойно. Колебание мощности генератора составляет 2-4 МВт. Длительная эксплуатация турбины в этой зоне разрешается. II-зона Наблюдаются наибольшие величины вибраций опорных частей агрегата и пульсации давления в проточной части турбины. Колебания мощности составляют 15-20 МВт. В этой зоне эксплуатация турбин длительное время не рекомендуется. III-зона Пульсация давления в проточной части, а также вибрация крышки турбины снижаются. Колебание мощности агрегата в этой зоне составляет 15-20 МВт. Эксплуатация турбины в этой зоне допускается. IV-зона Турбина работает наиболее спокойно. В этой зоне КПД турбины максимальный 22 |
23 |
 |
385 ? 460 МВт с учётом 7% резерва первичного регулирования составит420 ? 425 МВт IV зона 7% резерв НПРЧ 7% резерв НПРЧ III зона II зона Сертификационные испытания подтвердили данные технической документации и показали, что в III-зоне турбина не может выполнить требования стандарта по точности поддержания мощности 1% Рном, так же в этой зоне отмечался повышенный уровень вибрации ГА. Таким образом верхняя зона разрешённой работы оказалась очень суженной для участия в НПРЧ. I зона 23 |
24 |
 |
Работа ГА в режиме НПРЧ во время сертификационных испытанийОпыты по проверке реального участия гидроагрегата в НПРЧ не выявили каких-либо особенностей по сравнению с энергоблоками ТЭС. Красноярская ГЭС Точность поддержания мощности гидроагрегата в первой зоне разрешенной работы оставалась в пределах ±1 % Pном относительно задания. Во второй зоне разрешенной работы (3 и 4 зоны) активная мощность ГА выходила за пределы ±1 % Pном. В среднем 50 раз за час на время не более 3-х секунд. 24 |
25 |
 |
25 |
26 |
 |
Воткинская ГЭС Фактическое отклонение мощности от задания составлялоне более ±1%Рном (±2МВт). 26 |
27 |
 |
Пожелания по доработке стандарта НПРЧ для ГЭСИзмерение скорости оборотов ГА. Для высоконапорных ГЭС и гидроагрегатов большой мощности существующая методика проверки нечувствительности первичных регуляторов не совсем подходит. Отразить особенности гидродинамических процессов ГА при резком изменении нагрузки (обратный скачок мощности) Желательно увязать между собой стандарт «Обеспечение согласованной работы САРЧМ» и стандарт «НПРЧ ГЭС» обоюдными ссылками друг на друга или общими формулировками в части требования к ГРАМ для участия в НПРЧ. В стандарте надо описать методику проведения испытаний для гидроагрегатов с несколькими зонами разрешённой работы 27 |
28 |
 |
Битва!Битва!!! Сравнение характерных особенностей Сравнение характерных особенностей Гэс Тэс 28 |
29 |
 |
ГэсТэс Время ввода в работу из резерва Время ввода в работу из резерва Быстрый ввод в работу из резерва: Характерное время 1 минута до готовности к НПРЧ Длительный ввод в работу из резерва: Характерное время 1 час до готовности к НПРЧ 29 |
30 |
 |
ГэсТэс Регулировочный диапазон Регулировочный диапазон Имеется существенная зависимость диапазона регулирования от напора и условий по водоиспользованию Практически нет зависимости регулировочного диапазона от внешних условий 30 |
31 |
 |
ГэсТэс Маневренность Маневренность До 100% pном/минуту До 4% pном/минуту 31 |
32 |
 |
ГэсТэс Измерение скорости оборотов турбины Измерение скорости оборотов турбины Измерение с тахогенератора (на валу наблюдается биение) Измерение с зубчатого колеса на валу турбины 32 |
33 |
 |
ГэсТэс Поведение среды Поведение среды Наблюдаются всплески мощности по причине особенностей реакции среды на резкие изменения нагрузки Среда не вносит возмущений при резких изменениях нагрузки 33 |
34 |
 |
ГэсТэс Нечувствительность Нечувствительность На высоконапорных ГЭС проблемно измерить нечувствительность по стандартной методике 10мГц практически везде нет зависимости от Pном 34 |
35 |
 |
ГэсТэс Непрерывность диапазона регулирования Непрерывность диапазона регулирования На высоконапорных ГЭС имеются зоны неразрешенной работы, разбивающие диапазон Диапазон регулирования непрерывный 35 |
36 |
 |
ГэсТэс Размер резерва нпрч Размер резерва нпрч 7% Рном 5% Рном 36 |
37 |
 |
ГэсТэс Групповое взаимодействие Групповое взаимодействие Требуется обеспечить корректную совместную работу ГА и ГРАМ Энергоблоки работают индивидуально и нет необходимости обеспечивать групповое взаимодействие 37 |
38 |
 |
Спасибо за вниманиеС уважением ОДС ЭНЕРГОТЕСТ. 38 |
«Особенности сертификационных испытаний гидроагрегатов ГЭС» |
http://900igr.net/prezentacija/geografija/osobennosti-sertifikatsionnykh-ispytanij-gidroagregatov-ges-236830.html