<<  Происхождение науки геометрии Свойства площадей  >>
Площади фигур
Площади фигур.

Слайд 3 из презентации «Площади фигур»

Размеры: 720 х 540 пикселей, формат: .jpg. Чтобы бесплатно скачать слайд для использования на уроке, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Скачать всю презентацию «Площади фигур.pptx» можно в zip-архиве размером 470 КБ.

Похожие презентации

краткое содержание других презентаций на тему слайда

«Объемы фигур» - Объясните самостоятельно: Рассмотрим произвольную n-угольную призму A1A2…An B1B2…Bn. С учетом вспомненных соотношений, получим: Так что же такое – объем пространственной фигуры? Объем призмы. Если применить метод бесконечных интегральных сумм, то получится: 3) Получили ещё две прямые треугольные призмы ADBA1D1B1 и BECB1E1C1.

«Геометрия 8 класс площади» - Сдача работы. Вычислить площадь прямоугольника со сторонами 8 см и 15 см. Развивать интерес к изучению геометрии, повысить мотивацию учения. 1. Вводное слово учителя. Практическая работа. Формировать практические навыки вычисления площадей фигур. Повторить и закрепить формулы площади квадрата и прямоугольника.

«Площадь треугольника 8 класс» - Вывод: меньшая высота проведена к большему основанию. Основания и высоты треугольника. Треугольники АВС и АNC имеют общую высоту СН. Доказательство: Площадь прямоугольника: Равные многоугольники имеют равные площади. Sanc : sank = aс: ak, sanc : sank = ас : mk (2). SABC : SANC = AB : AN, SABC : SANC = AB : MN (1).

«Симметрия и симметричные фигуры» - Имеются фигуры, у которых нет ни одной оси симметрии. Плоская симметричная фигура. Зеркально-осевая симметрия. Звезда. Центральная симметрия. Говорят также, что фигура обладает осевой симметрией. Многие листья деревьев и лепестки цветов симметричны относительно среднего стебля. Многогранник. Разумеется , зеркало одинакововым образом отражает нижнюю половину обеих слов .

«Симметрия геометрических фигур» - Ромб имеет две оси симметрии. Равносторонний треугольник имеет три оси симметрии. Равнобедренный треугольник имеет одну ось симметрии. Ромб. Равносторонний треугольник. Прямоугольник. Как вы думаете, сколько осей симметрии имеет правильный шестиугольник? Разносторонний треугольник. Примеры фигур, у которых нет ни одной оси симметрии.

«Площади фигур геометрия» - в). чему будет равна площадь фигуры составленной из фигур А и Г. Квадратный миллиметр. Площади фигур. Среди фигур приведенных на рисунке укажите. Равные фигуры б). Теорема Пифагора. Прямоугольник, треугольник, параллелограмм. Квадратный сантиметр. Прямоугольные треуг. Фигуры равной площади. Площади различных фигур.

Площадь

41 презентация о площади
Урок

Геометрия

40 тем