<<  Сумма углов выпуклого многоугольника Проверка результатов исследования  >>
Выпуклый многоугольник - многоугольник, который лежит по одну сторону

Выпуклый многоугольник - многоугольник, который лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины. Диагональ многоугольника – отрезок, соединяющий любые две несоседние вершины. Сумма углов треугольника равна 180?. А.

Слайд 2 из презентации «Сумма углов выпуклого многоугольника»

Размеры: 720 х 540 пикселей, формат: .jpg. Чтобы бесплатно скачать слайд для использования на уроке, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Скачать всю презентацию «Сумма углов выпуклого многоугольника.ppt» можно в zip-архиве размером 1038 КБ.

Треугольник

краткое содержание других презентаций о треугольнике

««Треугольники» 7 класс» - Треугольник. Высота треугольника. Найти равные треугольники. Закрепить знания о свойствах прямоугольных треугольников. Элементы прямоугольного треугольника. Буквы. Биссектриса треугольника. Два прямоугольных треугольника. Высота. 1 признак. Первое упоминание о треугольнике и его свойствах. 2-й признак.

«Равнобедренный треугольник» - ВD - биссектриса. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой. Треугольник, все стороны которого равны, называется равносторонним. В равнобедренном треугольнике углы при основании равны. Треугольник называется равнобедренным, если две его стороны равны.

«Треугольники» - Любой треугольник имеет три биссектрисы. Признак равенства. Доказать. В любом треугольнике медианы пересекаются в одной точке. Признак равенства треугольников. Понятие треугольника. Медианы. Любой треугольник имеет три высоты. Доказательство. Два треугольника называются равными если их можно совместить наложением.

«Виды треугольников» - По сравнительной длине сторон различают следующие виды треугольников. По величине углов различают следующие виды. Точки называются вершинами, а отрезки- сторонами. Виды треугольников.

«Виды и свойства треугольников» - Треугольник. Итоговое повторение геометрии. Прямоугольный треугольник. Площадь треугольника. Проверь себя. Биссектриса. Взаимное расположение треугольника и отрезков. Равнобедренный треугольник. Задачи в координатах. Центр описанной окружности. Правильный треугольник. Свойства.

«Медиана треугольника» - Следовательно BD=DC. Необходимо ли в условии равенство площадей всех шести треугольников? Критерий о мотыльке с равновеликими крыльями Вернёмся к задаче, которую мы не смогли решить. Если являются медианами То делят треугольник на 6 равновеликих треугольников. Треугольники равны по катету и острому углу.

Всего в теме «Треугольник» 42 презентации
Урок

Геометрия

40 тем