Теорема Пифагора
<<  Теорема о трёх перпендикулярах Основные теоремы дифференциального исчисления  >>
Проектная работа по теме «Теорема о трех перпендикулярах»
Проектная работа по теме «Теорема о трех перпендикулярах»
Автор проекта : учащиеся 10 а класса Руководитель : Долгополова С.И. –
Автор проекта : учащиеся 10 а класса Руководитель : Долгополова С.И. –
Цели проекта :
Цели проекта :
Этапы работы над проектом
Этапы работы над проектом
Форма представления результатов
Форма представления результатов
Содержание
Содержание
Литература
Литература
Из истории доказательства теоремы о трех перпендикулярах
Из истории доказательства теоремы о трех перпендикулярах
Доказательство теоремы на Востоке
Доказательство теоремы на Востоке
Восточный вариант: Насир ад-Дин ат-Туси
Восточный вариант: Насир ад-Дин ат-Туси
Биография
Биография
Математика
Математика
Математика
Математика
Механика
Механика
Астрономия
Астрономия
Доказательство теоремы в Европе
Доказательство теоремы в Европе
Формулировка теоремы Бертраном
Формулировка теоремы Бертраном
Европейский вариант
Европейский вариант
Европейский вариант
Европейский вариант
Различные способы доказательства теоремы о трех перпендикулярах
Различные способы доказательства теоремы о трех перпендикулярах
Формулировка теоремы
Формулировка теоремы
Первое доказательство
Первое доказательство
Второе доказательство
Второе доказательство
Третье доказательство
Третье доказательство
Четвертое доказательство
Четвертое доказательство
Пятое доказательство
Пятое доказательство
Применение теоремы о трех перпендикулярах для доказательства свойств
Применение теоремы о трех перпендикулярах для доказательства свойств
О диагонали куба
О диагонали куба
О ребрах тетраэдра
О ребрах тетраэдра
Различные задачи
Различные задачи
Задача 1
Задача 1
Задача 2
Задача 2
The End
The End

Презентация на тему: «Теорема о трех перпендикулярах». Автор: Кистановы. Файл: «Теорема о трех перпендикулярах.pptx». Размер zip-архива: 3037 КБ.

Теорема о трех перпендикулярах

содержание презентации «Теорема о трех перпендикулярах.pptx»
СлайдТекст
1 Проектная работа по теме «Теорема о трех перпендикулярах»

Проектная работа по теме «Теорема о трех перпендикулярах»

МБОУСОШ №1 р.п. Новоспасское Ульяновской области

2 Автор проекта : учащиеся 10 а класса Руководитель : Долгополова С.И. –

Автор проекта : учащиеся 10 а класса Руководитель : Долгополова С.И. –

учитель первой квалификационной категории

3 Цели проекта :

Цели проекта :

Собрать информацию об истории теоремы о трех перпендикулярах Найти различные способы доказательства теоремы о трех перпендикулярах Найти примеры использования этой теоремы для доказательства различных свойств геометрических фигур Привести примеры решения различных задач с использованием этой теоремы

4 Этапы работы над проектом

Этапы работы над проектом

Формирование групп для работы над различными вопросами проекта 12.01.2015 Сбор и изучение информации группами 13.01.2015-15.01.2015

5 Форма представления результатов

Форма представления результатов

Выступление каждой группы с подготовленными вопросами на уроке геометрии 16.01.2015 Подготовка презентации проекта(обобщение материала всех групп) 17.01.15-23.01.15 Выставление данной работы на школьный сайт 26.01.15 Защита работы на школьной научно-практической конференции

6 Содержание

Содержание

Литература Из истории доказательства теоремы о трех перпендикулярах Различные способы доказательства теоремы Применение теоремы для доказательства различных свойств пространственных фигур Свойство диагонали куба Свойство ребер тетраэдра Различные задачи, в решении которых применяется теорема о трех перпендикулярах

7 Литература

Литература

Глейзер Г.И. История математики в школе 9-10 классы/Г.И. Глейзер.-М.:Просвещение, 1983. Болгарский Б.В. Очерки по истории математики. Стройк Д.А. Краткий очерк истории математики, 1984 Белл Б.В. Очерки по истории математики . Книга для учителя – пер. с английского –М. Просвещение 1979. Интернет ресурсы .

8 Из истории доказательства теоремы о трех перпендикулярах

Из истории доказательства теоремы о трех перпендикулярах

9 Доказательство теоремы на Востоке

Доказательство теоремы на Востоке

Имеющая большое значение в настоящее время, теорема о трех перпендикулярах была доказана математиками Ближнего и Среднего Востока: ее доказательство имеется в «Трактате о полном четырехстороннике» Насир ад-Дина ат-Туси.

10 Восточный вариант: Насир ад-Дин ат-Туси

Восточный вариант: Насир ад-Дин ат-Туси

Дата рождения:

18 февраля 1201

Место рождения:

Тус

Дата смерти:

26 июня 1274 (73 года)

Место смерти:

Марага

Научная сфера:

Астрономия, математика, философия, география, музыка, оптика, медицина, минералогия

11 Биография

Биография

(Насир ад-Дин Абу Джа`фар Мухаммад ибн Мухаммад ат-Туси) — арабский математик и астроном. Персидский математик, механик и астроном XIII века, ученик Камал ад-Дина ибн Юниса, чрезвычайно разносторонний учёный, автор сочинений по философии, географии, музыке, оптике, медицине, минералогии. Был знатоком греческой науки, комментировал труды Евклида, Архимеда, Автолика, Феодосия, Менелая, Аполлония, Аристарха, Гипсикла, Птолемея.

12 Математика

Математика

Среди математических трудов Туси особенно значителен «Трактат о полном четырёхстороннике» (в другом переводе — «Трактат о фигуре секущих»). Трактат был написан по-персидски во время пребывания ат-Туси в Аламуте и по-арабски, в несколько сокращенном виде, в Мараге (1260). В качестве своего основного предшественника ат-Туси указывает на ал-Бируни с его «Книгой ключей науки астрономии о том, что происходит на поверхности сферы». Фактически именно благодаря научному вкладу ат-Туси тригонометрия стала самостоятельной наукой. Ат-Туси принадлежит ряд сочинений, посвящённых учению о параллельных.

13 Математика

Математика

В «Сборнике по арифметике с помощью доски и пыли» (1265) ат-Туси подробно описал приём извлечения корней любой степени. Ат-Туси приводит здесь таблицу биномиальных коэффициентов в форме треугольника, известного ныне как треугольник Паскаля. Ат-Туси комментировал также труды Архимеда «Об измерении круга» и «О шаре и цилиндре».

14 Механика

Механика

Теоретические достижения ат-Туси имели для механики большое значение, позволяя преодолеть господствовавшее со времён Аристотеля противопоставление двух видов движений: свойственных небесным телам равномерных круговых движений и свойственного земным телам «местного» прямолинейного движения. Получив прямолинейное движение как результат сложения двух круговых, ат-Туси перебросил мост через эту пропасть и показал, что в движении небесных тел прямолинейное движение участвует равноправно с круговым. В результате небесная и земная кинематика оказывались объединёнными в единую науку с законами, универсальными для всех изучаемых тел.

15 Астрономия

Астрономия

В 1259 ат-Туси основал крупнейшую в то время в мире Марагинскую обсерваторию близ Тебриза. Обсерватория была оснащена многочисленными инструментами новой конструкции, наибольшим из которых был стенной квадрант радиусом 6,5 м. В обсерватории имелись также армиллярные сферы и инструмент с двумя квадрантами для одновременного измерения горизонтальных координат двух светил. Сотрудниками обсерватории в Мараге были ас-Самарканди, ал-Казвини, ал-Магриби, аш-Ширази и многие другие известные учёные. Марагинская обсерватория оказала исключительное влияние на обсерватории многих стран Востока, в том числе на обсерваторию в Пекине. Итогом 12-летних наблюдений марагинских астрономов с 1259 по 1271 год были «Ильханские таблицы». В этом зидже содержались таблицы для вычисления положения Солнца и планет, звёздный каталог, а также первые шестизначные таблицы синусов и тангенсов с интервалом 1?. На основании наблюдений звёзд ат-Туси очень точно определил величину предварения равноденствий (51,4?).

16 Доказательство теоремы в Европе

Доказательство теоремы в Европе

В Европе эта теорема была впервые сформулирована Луи Бертраном и доказана в «Элементах геометрии» Лежандра (1794 г.)

17 Формулировка теоремы Бертраном

Формулировка теоремы Бертраном

Бертран сформулировал ее так: Пусть прямая АР перпендикулярна Q, а точка Р –ее основание и пусть ВС- произвольная прямая этой плоскости. Проведем из точки Р прямую PD перпендикулярно ВС и соединим точки А и D; тогда прямая АD тоже будет перпендикулярна к ВС.

18 Европейский вариант

Европейский вариант

Бертран Жан Луи Дата рождения: 1731 Дата смерти: 1812 Страна: Швейцария

19 Европейский вариант

Европейский вариант

Бертран Жан Луи - ученик Л. Эйлера. Пользовался известностью его учебник «Новое изложение элементарной части математики» (Женева, 1778), включающий высшую тригонометрию». В этом учебнике Бертран пытался доказать пятый постулат Эвклида на основании сравнений бесконечных площадей. Занимался также теоремой Дезарга о перспективных треугольниках.

20 Различные способы доказательства теоремы о трех перпендикулярах

Различные способы доказательства теоремы о трех перпендикулярах

21 Формулировка теоремы

Формулировка теоремы

Прямая, проведённая в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной

22 Первое доказательство

Первое доказательство

Доказательство: 1.Проведем СА1 2.СА1||АВ по теореме.(Теорема: Если две прямые перпендикулярны к плоскости, то они параллельны). 3.Проведем через АВ и СА1 плоскость ?. 4.с перпендикулярна СА, с перпендикулярна ВС (по Теореме: «Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости».),с перпендикулярна ?, значит с перпендикулярна АС.

23 Второе доказательство

Второе доказательство

Доказательство. 1) СD ·CA = CD ·(CB+BA)=CD ·CB+CD ·BA 2) По условию CD CB. Значит, CD ·CB=0; CD BA, значит СD ·BA=0. Таким образом получаем: CD·CA=0,CD CA, c AC

24 Третье доказательство

Третье доказательство

Обратимся к рисунку, на котором отрезок АВ – перпендикуляр к плоскости ?, АС – наклонная, m – прямая, проведенная в плоскости ? через точку С перпендикулярно к проекции СВ наклонной. Докажем, что m перпендикулярна АС.

Рассмотрим плоскость АСВ. Прямая m перпендикулярна к этой плоскости, так как она перпендикулярна к двум пересекающимся прямым АВ и ВС, лежащим в плоскости АСВ(m ВС по ?). Отсюда следует, что прямая m перпендикулярна к любой прямой, лежащей в плоскости АВС, в частности m перпендикулярна АС. Теорема доказана.

25 Четвертое доказательство

Четвертое доказательство

От точки А отложим равные отрезки: АМ= АN. Точки М и N соединим с точками O и S. В ОА есть одновременно высота и медиана, этот треугольник равнобедренный: ОМ = ОN. Прямоугольные треугольники OSM и OSN равны (по двум катетам). Из их равенства следует, что SM= SN и SA- медиана равнобедренного треугольника MSN. Значит, SA одновременно и высота этого треугольника, т. е. SA?MN.

26 Пятое доказательство

Пятое доказательство

На прямой t возьмем произвольную точку В и соединим ее с точками О и S. Из прямоугольных треугольников SOB, SOA и AOB: = SO2+ OB2, SA2 = =SO2+ OA2, OB2- OA2= AB2. Вычтя из первого равенства второе, получим:SB2 – SA2 = =OB2 – OA2. Приняв во внимание третье равенство, будем иметь: SB2 – SA2 = AB2, SB2 = SA2 +AB2. Согласно теореме, обратной теореме Пифагора, SA?AB, т. е. t?SA

3 способ доказательства теоремы о трех перпендикулярах.

27 Применение теоремы о трех перпендикулярах для доказательства свойств

Применение теоремы о трех перпендикулярах для доказательства свойств

элементов различных пространственных фигур

28 О диагонали куба

О диагонали куба

29 О ребрах тетраэдра

О ребрах тетраэдра

30 Различные задачи

Различные задачи

Текстовые задачи, требующие при решении использования теоремы о трех перпендикулярах

31 Задача 1

Задача 1

32 Задача 2

Задача 2

33 The End

The End

«Теорема о трех перпендикулярах»
http://900igr.net/prezentacija/geometrija/teorema-o-trekh-perpendikuljarakh-238783.html
cсылка на страницу

Теорема Пифагора

16 презентаций о теореме Пифагора
Урок

Геометрия

40 тем
Слайды
900igr.net > Презентации по геометрии > Теорема Пифагора > Теорема о трех перпендикулярах