Числа в компьютере
<<  Представление целых чисел в компьютере Представление чисел в памяти компьютера  >>
Системы счисления, представление чисел в компьютере
Системы счисления, представление чисел в компьютере
Часть 1 Системы счисления
Часть 1 Системы счисления
Эволюция систем счисления
Эволюция систем счисления
Какие бывают системы счисления
Какие бывают системы счисления
Какие системы используются в ЭВМ
Какие системы используются в ЭВМ
10
10
Двоичная система счисления
Двоичная система счисления
Двоичная система счисления перевод из двоичной системы счисления в
Двоичная система счисления перевод из двоичной системы счисления в
Двоичная система счисления перевод из десятичной системы счисления в
Двоичная система счисления перевод из десятичной системы счисления в
Двоичная система счисления перевод из десятичной системы счисления в
Двоичная система счисления перевод из десятичной системы счисления в
Часть 2 Представление чисел в компьютере
Часть 2 Представление чисел в компьютере
Представление беззнаковых целых чисел
Представление беззнаковых целых чисел
Представление беззнаковых целых чисел
Представление беззнаковых целых чисел
Ошибочные ситуации при целочисленной арифметике
Ошибочные ситуации при целочисленной арифметике
Представление знаковых целых чисел
Представление знаковых целых чисел
Представление знаковых целых чисел
Представление знаковых целых чисел
Представление знаковых целых чисел
Представление знаковых целых чисел
Представление вещественных чисел
Представление вещественных чисел
Представление вещественных чисел
Представление вещественных чисел
Представление вещественных чисел
Представление вещественных чисел
Системы счисления, представление чисел в компьютере
Системы счисления, представление чисел в компьютере

Презентация на тему: «Системы счисления, представление чисел в компьютере». Автор: dubovik. Файл: «Системы счисления, представление чисел в компьютере.ppt». Размер zip-архива: 122 КБ.

Системы счисления, представление чисел в компьютере

содержание презентации «Системы счисления, представление чисел в компьютере.ppt»
СлайдТекст
1 Системы счисления, представление чисел в компьютере

Системы счисления, представление чисел в компьютере

2 Часть 1 Системы счисления

Часть 1 Системы счисления

3 Эволюция систем счисления

Эволюция систем счисления

Вавилонская – 60-ричная (осталась для обозначения времени и углов) Греческая – непозиционная, Римская – непозиционная, I II III IV V VI VII VIII IX X XI L C M Двенадцатеричная – дюжина, гросс, масса; 1 фут=12 дюймов, 1 шиллинг = 12 пенсов Прочие – 2 (Австралия, Полинезия), 5 (Африка), 20 (Кельты, Майя, Ацтеки) Индийская, арабская – позиционная, десятичная

4 Какие бывают системы счисления

Какие бывают системы счисления

Непозиционные Позиционные Значение цифры зависит от ее положения в числе ak*pk + ak-1*pk-1 + … + a1*p1 + a0*p0 Однородные Смешанные Более одного основания

5 Какие системы используются в ЭВМ

Какие системы используются в ЭВМ

Аппаратура Двоичная Программное обеспечение Двоичная Восьмеричная Шестнадцатеричная

6 10

10

2

8

16

3

00

0000

0

0

0

01

0001

1

1

1

02

0010

2

2

2

03

0011

3

3

10

04

0100

4

4

11

05

0101

5

5

12

06

0110

6

6

20

07

0111

7

7

21

08

1000

10

8

22

09

1001

11

9

100

10

1010

12

A

101

11

1011

13

B

102

12

1100

14

C

110

13

1101

15

D

111

14

1110

16

E

112

15

1111

17

F

120

7 Двоичная система счисления

Двоичная система счисления

Пример: 10910 = 1 * 102 + 0 * 101 + 9 * 100 = 109 11011012 = 1 * 26 + 1 * 25 + 0 * 24 + 1 * 23 + 1 * 22 + 0 * 21 + 1 * 20 = = 64 + 32 + 8 + 4 + 1 = 109

3.1562510 = 3 * 100 + 1 * 10-1 + 5 * 10-2 + 6 * 10-3 + 2 * 10-4 + 5 * 10-5 = = 3.15625 11.001012 = 1 * 21 + 1 * 20 + 0 * 2-1 + 0 * 2-2 + 1 * 2-3 + 0 * 2-4 + 1 * 2-5 = = 2 + 1 + 1/8 + 1/32 = 3.15625

Если

, Где

то xd - запись числа x в d-ичной системе счисления содержит m+n+1 цифр. Целая часть содержит m+1 цифр, дробная n.

8 Двоичная система счисления перевод из двоичной системы счисления в

Двоичная система счисления перевод из двоичной системы счисления в

десятичную

1001.01012= = 1*23 + 0*22 + 0*21 + 1*20 + + 0*2-1 + 1*2-2 + 0*2-3 + 1*2-4 = = 8 + 0 + 0 + 1 + 0 + 1/4 + 0 + 1/8 = 9.37510

Представление числа в виде суммы степеней двоек вычисление суммы

9 Двоичная система счисления перевод из десятичной системы счисления в

Двоичная система счисления перевод из десятичной системы счисления в

двоичную

13410

134. 6562510

0.6562510

Последовательно делим число на 2, сохраняем на каждой итерации остатки от деления на 2. Продолжаем пока число не равно 0. 1а. Остаток от деления 134 на 2 равен 0, т.е. 134 % 2 = 0 1b. 134 / 2 = 67 2а. 67 % 2 = 1 2b. 67 / 2 = 33 (целочисленное деление!) 3. 33 % 2 = 1, 33 / 2 = 16 4. 16 % 2 = 0, 16 / 2 = 8 5. 8 % 2 = 0, 8 / 2 = 4 6. 4 % 2 = 0, 4 / 2 = 2 7. 2 % 2 = 0, 2 / 2 = 1 8. 1 % 2 = 1, 1 / 2 = 0 Объединяем остатки в обратном порядке: 13410 = 100001102

Последовательно сравниваем число с 1/2, если число меньше 1/2, то запоминает 0 и удваиваем, иначе запоминает 1, отнимает 1/2 и удваиваем. Продолжаем, пока не получим 0. 1. 0. 65625 >= 1/2, запоминаем 1, 2*(0. 65625 - 1/2) = 0.3125 2. 0.3125 < 1/2, запоминаем 0, 2*0.3125 = 0.625 3. 0.625 >= 1/2, запоминаем 1, 2*(0.625 – 1/2) = 0.25 4. 0.25 < 1/2, запоминаем 0, 2*(0.25 – 1/2) = 0.5 5. 0.5 >= 1/2, запоминаем 1, 2*(0.5 – 1/2) = 0.0 Объединяем запомненные цифры в прямом порядке 0.6562510 = 101012

10000110.101012

10 Двоичная система счисления перевод из десятичной системы счисления в

Двоичная система счисления перевод из десятичной системы счисления в

двоичную

Десятичная дробь 0.2 в двоичном представлении бесконечна и периодична. 1. 0.2 < 1/2, запоминаем 0 2*0.2 = 0.4 2. 0.4 < 1/2, запоминаем 0 2*0.4 = 0.8 3. 0.8 >= 1/2, запоминаем 1 2*(0.8-1/2) = 0.6 4. 0.6 >= 1/2, запоминаем 1 2*(0.6-1/2) = 0.2 … Таким образом, 0.210 = 0.001100110011… = 0.(0011)2

11 Часть 2 Представление чисел в компьютере

Часть 2 Представление чисел в компьютере

12 Представление беззнаковых целых чисел

Представление беззнаковых целых чисел

Для представления беззнакового (т.е. неотрицательного) целого числа его необходимо перевести в двоичное представление и записать полученную последовательность 0 и 1 (битов) в соответствующие ячейки памяти.

Например, 12310 = 11110112 Поэтому представление числа 123 с помощью однобайтового типа данных (unsigned char в C) будет следующим:

Однобайтовый тип данных позволяет представлять числа от 0 до 28-1:

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

28-1 = 255

13 Представление беззнаковых целых чисел

Представление беззнаковых целых чисел

Тип данных

Минимальное представимое число

Максимальное представимое число

Однобайтовый (unsigned char)

0

28-1

Четырехбайтовый (unsigned int)

0

232-1

Восьмибайтовый (unsigned long long)

0

264-1

14 Ошибочные ситуации при целочисленной арифметике

Ошибочные ситуации при целочисленной арифметике

Переполнение, недополнение чтение и установка флага переноса в арифметических командах, операции с насыщением, произвольная точность Деление на нуль обработка исключительной ситуации

15 Представление знаковых целых чисел

Представление знаковых целых чисел

Знаковые целые числа в памяти компьютера представляются с помощью дополнительного кода. Вычисление дополнительного кода числа x: 1. Если x ? 0, то дополнительный код x совпадает с его двоичным представлением 2. Если x < 0, то для получение дополнительного кода необходимо: А. найди двоичное представление модуля x B. Изменить все биты в двоичном представлении x на противоположные С. Прибавить единицу Например, представим число -84 в знаковом однобайтовом типе (тип char в C): А. |-8410| = 8410 = 26 + 24 + 22 = 010101002 B. Инвертируем все биты: 010101002 ? 101010112 С. Прибавляем единицу: 101010112 + 12 = 101011002

16 Представление знаковых целых чисел

Представление знаковых целых чисел

Однобайтовый знаковый тип данных (char) позволяет представлять числа от -27 до 27-1 (от -128 до 127).

17 Представление знаковых целых чисел

Представление знаковых целых чисел

Тип данных

Минимальное представимое число

Максимальное представимое число

Однобайтовый (char)

-27

27-1

Четырехбайтовый (int)

-231

231-1

Восьмибайтовый (long long)

-263

263-1

18 Представление вещественных чисел

Представление вещественных чисел

,

По стандарту IEEE 754 вещественное число А представляется в виде:

S – однобитовый знак числа, S=0 для положительных чисел, S=1 для отрицательных; M – нормализованная мантисса E – показатель степени двойки

Тип

Количество битов в мантиссе

Количество битов в экспоненте

Float (32 бит)

23

8

Double (64 бит)

52

11

19 Представление вещественных чисел

Представление вещественных чисел

Пример представления числа (0.15625)10=(0.00101)2 в типе float. Необходимо представить число в виде произведения

Где

.

0.15625 = 1.25 · 2-3, таким образом, S = 0, M = 1.2510, E = -310. 1. 0.15625 > 0, поэтому sign = 0. 2. Вычислим двоичное представление мантиссы M = 1.2510 = 1.012. В силу условия нормализованности мантиссы (1 ? M < 2) мантисса всегда начинается в единицы, что позволяет записывать только дробную ее часть. Поэтому fraction = 012. 3. Показатель степени вычисляется следующим образом: exponent = E + (2q-1 – 1)10, где q – количество битов, выделяемых под порядок (в случае float q=8). Таким образом, exponent = -310 + (28-1 – 1)10 = -310 + 12710 = 12410 = 11111002 В результате, число 0.15625 представимо в следующем виде:

0

0

1

1

1

1

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

23

31

0

sign

Exponent (8 битов)

Fraction (23 бита)

20 Представление вещественных чисел

Представление вещественных чисел

Для стандартных типов данных имеет место следующие значения:

Тип

Минимальный десятичный порядок

Максимальный десятичный порядок

Число значащих десятичных знаков

float

-45*

38

7

double

-323

308

15

* Стоит отметить, что мантисса может быть ненормализованной, что и приводит к таким значениям минимального порядка.

Под мантиссу в float отводится 23 бита + 1 неявный, т.о., получается 24 значащих двоичных знака или 7 десятичных знаков в силу того, что 224 ? 107. Максимальный двоичный порядок 27-1, поэтому максимальный десятичный порядок равен 38, т.к. 2^(27-1) ? 1038.

21 Системы счисления, представление чисел в компьютере
«Системы счисления, представление чисел в компьютере»
http://900igr.net/prezentacija/informatika/sistemy-schislenija-predstavlenie-chisel-v-kompjutere-82376.html
cсылка на страницу
Урок

Информатика

130 тем
Слайды
900igr.net > Презентации по информатике > Числа в компьютере > Системы счисления, представление чисел в компьютере