Слайды из презентации
«Параллельные прямые в пространстве» к уроку геометрии на тему «Параллельность в пространстве»
Автор: Домашний.
Чтобы увеличить слайд, нажмите на его эскиз. Чтобы использовать презентацию на уроке,
скачайте файл «Параллельные прямые в пространстве.ppt» бесплатно
в zip-архиве размером 1347 КБ.
Скачать презентацию
№ | Слайд | Текст |
1 |
 |
Параллельность прямых в пространстве |
2 |
 |
Вспомним планиметриюКаково может быть взаимное расположение двух прямых на плоскости? Какие прямые в планиметрии называются параллельными? |
3 |
 |
Вспомним планиметриюАксиома параллельных прямых - ? Через точку, не лежащую на данной прямой, Проходит прямая, параллельная данной и притом только одна |
4 |
 |
Вспомним планиметриюСледствия аксиомы параллельных прямых - ? Если прямая пересекает одну из параллельных прямых, то она пересекает и другую. Если две прямые параллельны третьей прямой, то они параллельны. |
5 |
 |
?? ? ? ? Вернемся в пространство. Каково может быть взаимное расположение прямых в пространстве? AB и CD B1C и C1C AD1 и A1D BC и AA1 B1C и A1D II ? ? B1 C1 D1 А1 B C А D |
6 |
 |
Вернемся в пространствоКакие прямые в пространстве называются параллельными? B1C и A1D B1 C1 Параллельными называются прямые, лежащие в одной плоскости и не имеющие точек пересечения. D1 А1 B C А D |
7 |
 |
Теорема о параллельных прямыхa b Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна. К |
8 |
 |
Параллельные отрезки, параллельные лучи в пространстве…Они лежат на параллельных прямых Отрезки в пространстве называются параллельными, если … Лучи в пространстве называются параллельными, если … |
9 |
 |
Лемма о параллельных прямыхb a Если одна из параллельных прямых пересекает плоскость, то и вторая прямая также пересекает эту плоскость? |
10 |
 |
Лемма о параллельных прямыхДано: Доказать: b и имеют общую точку, причем она единственная b a |
11 |
 |
Лемма о параллельных прямыхДано: Доказать: b и имеют общую точку, причем она единственная М Р С b a |
12 |
 |
Теорема о параллельности трех прямых в пространствеa b С Если две прямые параллельны третьей прямой, то они параллельны Дано: И Доказать: |
13 |
 |
Теорема о параллельности трех прямых в пространствеa b С Р Если две прямые параллельны третьей прямой, то они параллельны Доказать: Прямые а и b лежат в одной плоскости. 2) Не пересекаются. |
14 |
 |
Задача №17Дано: М – середина BD N – середина CD Q – середина АС P – середина АВ АD = 12 см; ВС = 14 см Найти: PMNQP . Ответ: 26 см. D M N A Р B Q C |
«Параллельные прямые в пространстве» |
http://900igr.net/prezentatsii/geometrija/Parallelnye-prjamye-v-prostranstve/Parallelnye-prjamye-v-prostranstve.html