Скачать
презентацию
<<  Сечения призмы Призмы встречающиеся в жизни  >>
Многоугольник

Многоугольник, плоскость которого перпендикулярна боковым ребрам призмы, а вершины лежат на прямых, содержащих ребра называется перпендикулярным сечением призмы.

Слайд 13 из презентации «Понятие призмы» к урокам геометрии на тему «Призма»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать слайд для использования на уроке геометрии, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Скачать всю презентацию «Понятие призмы.ppt» можно в zip-архиве размером 723 КБ.

Скачать презентацию

Призма

краткое содержание других презентаций о призме

«Понятие многогранника призмы» - В сечении образуется параллелограмм. Теорема. Дано: Сторона основания правильной треугольной призмы равна 8 см, боковое ребро - 6 см. Доказательство. Сечение правильной призмы. Такое сечение называется диагональным сечением призмы. В сечении образуется прямоугольник. 1. Сечение призмы плоскостью, параллельной основанию.

«Геометрическое тело призма» - Сумма площадей. Что называется диагональю призмы. Какие из данных многогранников являются призмами. Диагональные сечения. Прямоугольный параллелепипед. Что такое призма. Размышления. Диагональ правильной треугольной призмы. Параллелепипед. Призма. Многогранник. Способ. Парник для теплицы. Теорема Пифагора.

«Многогранники призма» - Исаак Ньютон 1642 —1727. Проходя через призму, световые лучи преломляются. DABC – тетраэдр, выпуклый многогранник. ABCDMP – октаэдр, составлен из восьми треугольников. Где применяются призмы? В 60-х годах ХVII столетия Исаак Ньютон проводил эксперименты со светом. Выпуклый многогранник. ABCDA1B1C1D1 – параллелепипед, выпуклый многогранник.

«Понятие призмы» - Площадь полной поверхности призмы. Определение призмы. Призмы встречающиеся в жизни. Правильная призма. Доказательство. Призма. Площадь боковой поверхности призмы. Прямая призма. Многоугольник. Треугольные призмы. Сечения призмы. Виды призм. Объем наклонной призмы. Наклонная и прямая призма.

«Свойства призмы» - Призма. Вершина. Теорема косинусов для трехгранного угла. Центр. Цилиндр. Определения. Выпуклый многогранник. Призмой называется многогранник. Сформулируйте и обоснуйте. Основание. Условие, сформулированное для прямой призмы. Ребро треугольной призмы. Формула трех косинусов. Треугольная призма. Теорема синусов для трехгранного угла.

«Призма геометрия» - Рисунок с дополнительными построениями. Дана прямая четырехугольная призма ABCDA1B1C1D1. Таким образом, V=SABC•h (1). основаниями которых являются прямоугольные треугольники ABD и BDC. Куб - прямоугольный параллелепипед с равными измерениями. Все шесть граней куба - равные квадраты. Объем прямой призмы равен произведению площади основания на высоту.

Всего в теме «Призма» 10 презентаций
Урок

Геометрия

39 тем
Слайд 13: Многоугольник | Презентация: Понятие призмы.ppt | Тема: Призма | Урок: Геометрия