№ | Слайд | Текст |
1 |
 |
Прямоугольная система координатПрямоугольной системой координат в пространстве называется тройка взаимно перпендикулярных координатных прямых с общим началом координат. Общее начало координат обозначается буквой O, а координатные прямые обозначаются Ox, Oy, Oz и называются соответственно осью абсцисс, осью ординат и осью аппликат . Плоскости, проходящие через пары координатных прямых, называются координатными плоскостями и обозначаются Oxy, Oxz и Oyz соответственно. |
2 |
 |
Координаты точкиПусть A - произвольная точка пространства, в котором выбрана прямоугольная система координат. Через точку A проведем плоскость, перпендикулярную оси Ox, и точку ее пересечения с осью Ox обозначим Ax. Координата этой точки на оси Ox называется абсциссой точки A и обозначается x. Аналогично на осях Oy и Oz определяются точки Ay и Az, координаты которых называются соответственно ординатой и аппликатой точки A и обозначаются y и z соответственно. Тройка чисел (x, y, z) называется координатами точки A в пространстве. |
3 |
 |
Декарт Р. Декарт. Впервые прямоугольные координаты были введены Р. Декартом (1596-1650), поэтому прямоугольную систему координат называют также декартовой системой координат, а сами координаты – декартовыми координатами. Введение прямоугольных координат на плоскости позволило свести многие геометрические задачи к чисто алгебраическим и, наоборот, алгебраические задачи – к геометрическим. Метод, основанный на этом, называется методом координат. |
4 |
 |
Найдите координаты Упражнение 1. Найдите координаты ортогональных проекций точек A(1, 3, 4) и B(5, -6, 2) на: а) плоскость Oxy; б) плоскость Oyz; в) ось Ox; г) ось Oz. Ответ: а) (1, 3, 0), (5, -6, 0); б) (0, 3, 4), (0, -6, 2); в) (1, 0, 0), (5, 0, 0); г) (0, 0, 4), (0, 0, 2). |
5 |
 |
Геометрическое место Упражнение 2. Что представляет собой геометрическое место точек пространства, для которых: а) первая координата равна нулю; б) вторая координата равна нулю; в) третья координата равна нулю; г) первая и вторая координаты равны нулю; д) первая и третья координаты равны нулю; е) вторая и третья координаты равны нулю; ж) все координаты равны нулю? Ответ: а) Плоскость Oyz; Б) плоскость oxz; В) плоскость oxy; Г) ось oz; Д) ось oy; Е) ось ox; Ж) начало координат. |
6 |
 |
Точка Упражнение 3. На каком расстоянии находится точка A(1, -2, 3) от координатной плоскости: а) Oxy; б) Oxz; в) Oyz? Ответ: а) 3; Б) 2; В) 1. |
7 |
 |
Упражнение 4На каком расстоянии находится точка A(1, -2, 3) от координатной прямой: а) Ox; б) Oy; в) Oz? |
8 |
 |
Геометрическое место точек Упражнение 5. Каким является геометрическое место точек пространства, для которых: а) первая координата равна единице; б) первая и вторая координаты равны единице? Ответ: а) Плоскость, параллельная плоскости Oyz и проходящая через точку (1, 0, 0); Б) прямая, параллельная оси oz и и проходящая через точку (1, 1, 0). |
9 |
 |
Координаты точек пространства Упражнение 6. Какому условию удовлетворяют координаты точек пространства, одинаково удаленные от: а) двух координатных плоскостей Oxy, Oyz; б) всех трех координатных плоскостей? Ответ: а) z=x; Б) x=y=z. |
10 |
 |
Ребро Упражнение 7. Дан куб A...D1, ребро которого равно 1. Начало координат находится в точке B. Положительные лучи осей координат соответственно BA, BC и BB1. Назовите координаты всех вершин куба. Ответ: A(1, 0, 0), B(0, 0, 0), C(0, 1, 0), D(1, 1, 0), A1(1, 0, 1), B1(0, 0, 1), C1(0, 1, 1), D1(1, 1, 1). |
11 |
 |
Центр нижнего основания куба Упражнение 8. Куб A...D1 помещен в прямоугольную систему координат так, что началом координат является центр нижнего основания куба, ребра куба параллельны соответствующим осям координат, вершина A имеет координаты (-2, 2, 0). Найдите координаты всех остальных вершин куба. Ответ: B(-2, -2, 0), C(2, -2, 0), D(2, 2, 0), A1(-2, 2, 4), B1(-2, -2, 4), C1(2, -2, 4), D1(2, 2, 4). |
12 |
 |
Начало координат Упражнение 9. Центром октаэдра является начало координат. Две его вершины имеют координаты (1, 0, 0) и (0, 1, 0). Найдите координаты остальных вершин октаэдра. Ответ: (-1, 0, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1). |
13 |
 |
Сфера радиуса Упражнение 10. Как расположена сфера радиуса 2 с центром в точке с координатами (1, 2, 3) относительно координатных плоскостей? Ответ: Не имеет общих точек с координатной плоскостью Oxz; касается координатной плоскости Oxz; пересекает координатную плоскость Oyz. |
14 |
 |
Координаты Упражнение 11. Точка A имеет координаты (x, y, z). Найдите координаты симметричной точки относительно: а) координатных плоскостей; б) координатных прямых; в) начала координат. Ответ: а) (-x, y, z), (x, -y, z), (x, y, -z); Б) (-x, -y, z), (-x, y, -z), (x, -y, -z); В) (-x, -y, -z). |
15 |
 |
Координаты середины отрезка Упражнение 12. Найдите координаты середины отрезка: а) AB, если A(1, 2, 3) и B(-1, 0, 1); б) CD, если C(3, 3, 0) и D(3, -1, 2). Ответ: а) (1, 1, 2); Б) (3, 1, 1). |
«Прямоугольная система координат» |
http://900igr.net/prezentatsii/geometrija/Prjamougolnaja-sistema-koordinat/Prjamougolnaja-sistema-koordinat.html