№ | Слайд | Текст |
1 |
 |
Сечение многогранниковГеометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать. Галилео Галилей. |
2 |
 |
Основные понятия Содержание. Основные понятия Демонстрация сечений Метод следов Метод вспомогательных сечений Комбинированный метод Защита проектов Тест |
3 |
 |
Тело, поверхность которого состоит из конечного числа плоских многоугольников Многогранником называют. тело, поверхность которого состоит из конечного числа плоских многоугольников. Элементы многогранника: вершины, ребра, грани. |
4 |
 |
Плоская фигура Сечением поверхности геометрических тел называется. Плоская фигура, полученная в результате пересечения тела плоскостью и содержащая точки, принадлежащие как поверхности тела, так и секущей плоскости |
5 |
 |
Сечение |
6 |
 |
Плоскость(в том числе и секущую) можно задать следующим образом. |
7 |
 |
Демонстрация сечений |
8 |
 |
ПризмаСекущая плоскость Сечение Плоскость основания Даны три точки на боковых ребрах |
9 |
 |
Секущая плоскостьпересекает грани многогранника по прямым, а точнее по отрезкам - разрезам. Так как секущая плоскость идет непрерывно, то разрезы образуют замкнутую фигуру-многоугольник. Полученный таким образом многоугольник и будет сечением тела. |
10 |
 |
Методы построения сеченийАксиомы стереометрии Аксиоматический метод |
11 |
 |
Аксиоматический методМетод следов Суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры . Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Эту линию называют следом секущей плоскости. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры . |
12 |
 |
Постройте сечение призмы L. M F K N G B C O A D Постройте сечение призмы, проходящее через точки O,F,G Шаг 1: разрезаем грани KLBA и LMCB Проводим через точки F и O прямую FO. Отрезок FO есть разрез грани KLBA секущей плоскостью. Аналогичным образом отрезок FG есть разрез грани LMCB. Почему мы уверены, что сделали разрезы на гранях? Аксиома Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку (а у нас даже 2 точки). Теорема Если две точки прямой принадлежат плоскости, то вся прямая принадлежит этой плоскости. |
13 |
 |
След секущей плоскости L. M F K N G B C O A D Шаг 2: ищем след секущей плоскости на плоскости основания Проводим прямую АВ до пересечения с прямой FO. Получим точку H, которая принадлежит и секущей плоскости, и плоскости основания. Аналогичным образом получим точку R. Через точки H и R проводим прямую HR – след секущей плоскости Почему мы уверены, прямая HR – след секущей плоскости на плоскости основания? Аксиома Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку (а у нас даже 2 точки). Теорема Если две точки прямой принадлежат плоскости, то вся прямая принадлежит этой плоскости. |
14 |
 |
Разрезы L. M F N K G B C O A D Шаг 3: делаем разрезы на других гранях Почему мы уверены, что все делаем правильно? Так как прямая HR пересекает нижнюю грань многогранника, то получаем точку E на входе и точку S на выходе. Таким образом отрезок ES есть разрез грани ABCD. Проводим отрезки ОЕ (разрез грани KNDA) и GS (разрез грани MNDC). Аксиома Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку (а у нас даже 2 точки). Теорема Если две точки прямой принадлежат плоскости, то вся прямая принадлежит этой плоскости. |
15 |
 |
Разрезы образовали пятиугольник L. M Все разрезы образовали пятиугольник OFGSE, который и является сечением призмы плоскостью, проходящей через точки O, F, G. F K N G G B C O A D Шаг 4: выделяем сечение многогранника |
16 |
 |
Построй сечения призмы Задание № 1 Задание № 2 Построй сечения призмы по трем данным точкам. А теперь проверь себя!!! Ответ |
17 |
 |
Метод вспомогательных сеченийЭтот метод построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь в виду, что построения, выполняемые при использовании этого метода, зачастую получаются «искусственное». Тем не менее в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным. |
18 |
 |
Зададим точку На ребре BM пирамиды MABCD зададим точку Р. Построим сечение пирамиды плоскостью PQR, точку R которой зададим на грани АMD,а Q на грани DMC. 1. Находим точки Р', Q' и R' и затем строим вспомогательное сечение пирамиды плоскостью, определяемой какими-нибудь двумя пересекающимися прямыми из трех прямых MP, MQ и МR. Например, плоскостью МРQ. 2. Построим другое вспомогательное сечение пирамиды плоскостью определяемой двумя пересекающимися прямыми, одна из которых — это прямая MR, а другая прямая — та, на которой мы хотим найти след плоскости PQR. Например, прямая МС. B(P’) |
19 |
 |
Находим точку 3. Находим точку F, в которой пересекаются прямые Р'Q' и R'С, а затем строим прямую MF — линию пересечения плоскостей. 4 В плоскости MPQ’ проводим прямую PQ и находим точку F'=PQ пересекается MF. 5. Так как точка F' лежит на прямой PQ, то она лежит в плоскости PQR. Тогда и прямая RF, лежит в плоскости PQR. Проводим прямую RF', и находим точку С'=RF' пересекается МС. Точка С', таким образом, лежит и на прямой МС, и в плоскости PQR, т. е. она является следом плоскости PQR на прямой МС (в данном случае и на ребре МС). М P C’ Q F’ R B(P’) C Q’ F А R’ D |
20 |
 |
Дальнейшие построения 6. Дальнейшие построения вполне понятны: строим C'Q, D', D'R, А', А'Р, РС'. Четырехугольник РС'D'А' — искомое сечение. М P C’ Q R D’ Q’ F А R’ D R’ |
21 |
 |
Построить сечение призмы Задание № 3 Построить сечение призмы по трем данным точкам. Удачи вам, в решении задачи! Ответ |
22 |
 |
Комбинированный методСуть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом. |
23 |
 |
Сечение куба Постройте сечение куба, проходящее через точки P, R, Q. 1. Точки P и R лежат в одной плоскости, проведём прямую PR. 2. Прямая PR лежит в плоскости AA’B’B, точка Q лежит в плоскости DD’C’C, параллельной AA’B’B. 3. Проведём через точку Q прямую параллельную прямой PR, получим точку K B’ C’ P A’ D’ Q R C B Почему мы уверены, что все делаем правильно? K D A Теорема Если две точки прямой принадлежат плоскости, то вся прямая принадлежит этой плоскости. Теорема Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны |
24 |
 |
Найдём точку пересечения прямых 4. Найдём точку пересечения прямых PR и AB, получим точку L. 5. Прямая LK в плоскости ABCD оставляет след FK 6. Точки R и F лежат в одной плоскости AA’D’D, проведём прямую RF. 7. Прямая RF лежит в плоскости АA’D’D, точка Q в плоскости BB’C’C,параллельной плоскости AA’D’D. 8. Проведём прямую параллельную прямой RF, через точку Q, получим точку M. B’ M C’ P A’ D’ Почему мы уверены, что все делаем правильно? Q Аксиома Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку. R C B Теорема Если две точки прямой принадлежат плоскости, то вся прямая принадлежит этой плоскости. K A D F L Теорема Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны |
25 |
 |
Полученный шестиугольник 9. Проведем PM. 10. Полученный шестиугольник является искомым сечением B’ M C’ P A’ D’ Q R C B K A D F |
26 |
 |
Построй сечение куба Задание № 4 Построй сечение куба, по трем данным точкам, а потом проверь себя, кликнув по этому рисунку. А теперь проверь себя!!! |
27 |
 |
Защита проектов |
28 |
 |
Многоугольники Защита проектов. Многоугольники, полученные при сечении куба Нахождение площади сечений многогранников |
29 |
 |
ТестЖелаю удачи! Давайте, протестируемся |
30 |
 |
Отлично |
31 |
 |
Молодец |
32 |
 |
МолодцыЯ за вас рада. Если все сечения совпали, то тема усвоена! |
«Сечение многогранника плоскостью» |
http://900igr.net/prezentatsii/geometrija/Sechenie-mnogogrannika-ploskostju/Sechenie-mnogogrannika-ploskostju.html